<div dir="ltr"><div class="gmail_extra"><div class="gmail_quote">On Wed, Sep 24, 2014 at 5:03 PM, Alletto, John M <span dir="ltr"><<a href="mailto:john.m.alletto@lmco.com" target="_blank">john.m.alletto@lmco.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div lang="EN-US" link="blue" vlink="purple">
<div>
<p class="MsoNormal">I have set up a test for running a Laplacian solver with 2 sets of data.<u></u><u></u></p>
<p class="MsoNormal">One has twice as many points as the other. <u></u><u></u></p>
<p class="MsoNormal">Both cover the same range, I input the X, Y and Z variables set using SetCoordinates.<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">I compare the results with an analytical model.<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">I expected the Laplace run with a smaller delta to have a more accurate solution, yet they come out almost exactly the same.<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">Any ideas? </p><p class="MsoNormal"><u></u></p>
</div>
</div>
</blockquote></div><br>I think you may have the wrong idea of accuracy. If you are expecting to converge in the L_2 norm, you must</div><div class="gmail_extra">do an integral to get the error, rather than just take the difference of vertex values (that is the l2 norm). You could</div><div class="gmail_extra">be seeing superconvergence at the vertices, but I do not know what discretization you are using.</div><div class="gmail_extra"><br></div><div class="gmail_extra"> Matt<br clear="all"><div><br></div>-- <br>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener
</div></div>