
ABSTRACTIONS FOR EXPRESSING NETWORK PROBLEMS IN PETSc

Shrirang Abhyankar, Jed Brown, Matthew Knepley, Florian Meier, Barry Smith

SIAM Workshop on Network Science 2014
July 6-7 · Chicago

Summary

Developing scalable software for large-scale applications,

particularly for networks and circuits, is challenging due

to the underlying unstructured and irregular geometry

of the problem. We present a programming framework

recently added to the PETSc [2] library to easily express

network problems, and thereby reduce the application

development time. A brief overview of the framework is

presented and two application examples, one from power

grid and the other from radio networks, are discussed.

PETSc

PETSc is an open source package for the numerical solu-

tion of large-scale applications and provides the building

blocks for the implementation of large-scale application

codes on parallel (and serial) computers. The wide range

of sequential and parallel linear and nonlinear solvers, time-

stepping methods, preconditioners, reordering strategies,

flexible runtime options, ease of code implementation, de-

bugging options, and a comprehensive source code profiler

have made PETSc an attractive experimentation platform

for developing scientific applications. Along with the nu-

merical solvers, PETSc also provides abstractions through

the DM class for managing the application geometry and

data.

DMNetwork framework

DMNetwork is a subclass of the DM class that provides a

framework for managing geometry and data for unstruc-

tured grids, particularly suited for network applications.

Its built on top of the DMPlex subclass, a rewritten version

of the Sieve [3] framework. Delving on three basic elements

of any network: nodes, edges, and data, the framework

provides abstractions for easily creating the network lay-

out, partitioning, data movement, and utility routines

for extracting connectivity information. A key feature of

this framework is that the user only needs to work with

higher level application specific abstractions while PETSc

takes care of the underlying data management; a feature

consistent with the PETSc philosophy. We present the

salient features of the DMNetwork framework next and

list some of the utility routines in Table 1.

• Support for assigning different degrees of freedom

for any node or edge. This is particularly important

for networks that comprise of sub-networks having

different characteristics.

• Any data, ‘component’ as we term it, can be attached

with a network node or edge. For example, the com-

ponent could be edge weights or vertex weights for

graph problems, or network elements in the case of

circuits. Multiple components can be attached to an

edge or node.

• Support for partitioning (edge distribution) of the

network graph using ParMetis or Chaco partitioners.

Components associated with nodes/edges are also

distributed to the appropriate processor when the

network is partitioned.

• The framework can create the linear operator or the

Jacobian for the network.

• Global (parallel) vectors and local vectors for residual

evaluation can be created by DMNetwork.

• DMNetwork also keeps track of the global and local

offsets for use in function evaluation or matrix assem-

bly. It also stores information of the ‘ghost’ nodes

(nodes that need to perform communication with

other processors).

• Support for global-to-local and local-to-global com-

munication of vector entries.

• While doing a calculation, most network applications

require information about the edges connected to

a node, and/or the nodes covering an edge. The

framework provides API routines to extract this in-

formation.

• Full compatibility with all PETSc’s linear (KSP), non-

linear (SNES), and time-stepping (TS) solvers.

1

Utility routine Description

CreateLayout Creates network graph

AddComponent Adds a component to a node

or edge

AddNumVariables Adds the degrees of freedom

for a node or edge

SetUp Creates Network

GetNumComponents Gets the number of compo-

nents at a node or edge

Distribute Partitions network, dis-

tributes component data

GetSupportingEdges Gets the edges supporting a

node

GetConnectedNodes Gets nodes covering an edge

Table 1: DMNetwork API routines

Application examples

The DMNetwork interface has been used for a couple of

nonlinear applications that also use PETSc’s nonlinear

solver SNES.

Power systems

Power flow analysis, sometimes referred to as load flow

analysis, is the linchpin of steady-state power systems

analysis. Power flow entails the solution of nonlinear power

balance equations at each bus (node), i.e., the summation

of the power injected at each bus and absorbed by the

network must equate to zero. The equations for each bus

are given by∑
k∈I(i,k) 6=0

|Vi||Vk|(Gikcos(θik) +Biksin(θik))− P inj
i = 0

(1)∑
k∈I(i,k) 6=0

|Vi||Vk|(Giksin(θik)−Bikcos(θik))−Qinj
i = 0,

(2)

where θik = θi − θk and V ∈ Rn and θ ∈ Rn are the

variables to be solved. In this example application, each

node has two degrees of freedom, Vi, θi for each bus. To

compute the residual at each bus, information about its

neighboring buses and the connected edges is needed. This

can be easily obtained using the DMNetwork API routines.

Figure 1 shows the scalability of the power flow ap-

plication with both direct (SuperLU Dist package) and

iterative linear solvers (GMRES + restricted additive

Schwarz preconditioner) for a very large 90000 bus power

system.

 1 2 4 8 16
0

1

2

3

4

5

6

7

8

9

10

Number of cores

S
p

e
e

d
u

p

block−Jacobi

RASM 1−overlap

RASM 2−overlap

RASM 3 overlap

SuperLU_Dist

Figure 1: Speedup for power flow for a 91984 bus case

with different preconditioning schemes [1]

Radio networks

The second application that currently uses the DMNetwork

framework is a nonlinear problem from radio networks.

Here, the goal is to find the probabilities of receiving pack-

ets for radio links, which are modeled as nodes in the

network. Each radio link i in the network generates pack-

ets conforming to a Poisson distribution with probability

gi. These packets are routed along fixed paths to a sink.

When two packets are sent at the same time, they are

dropped. This builds up the following equation system:

fa,i(x) = 0 = gi +
∑
j∈Fi

xs,j − xa,i, (3)

fs,i(x) = 0 = xa,i

∏
j∈Ii

(1− xa,j)

− xs,i. (4)

where xa,i and xs,i are the probabilities that link i accesses

the channel and succeeds with the transmission respec-

tively and Fi and Ii are the inflowing and interfering

links.

References

[1] S. Abyankar, B. F. Smith, and E. Constantinescu. Evaluation
of overlapping restricted additive Schwarz preconditioning for
parallel solution of very large power flow problems. In 3rd
International Workshop on High Performance Computing, Net-
working, and Analytics for the Power Grid. ACM, 2013.

[2] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and
H. Zhang. PETSc Web page. http://www.mcs.anl.gov/petsc,
2013.

[3] M. G. Knepley and D. A. Karpeev. Mesh algorithms for PDE
with Sieve I: Mesh distribution. Technical Report ANL/MCS-
P1455-0907, Argonne National Laboratory, February 2007. ftp:
//info.mcs.anl.gov/pub/tech_reports/reports/P1455.pdf.

2

http://www.mcs.anl.gov/petsc
ftp://info.mcs.anl.gov/pub/tech_reports/reports/P1455.pdf
ftp://info.mcs.anl.gov/pub/tech_reports/reports/P1455.pdf

