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1. INTRODUCTION

This work is motivated by increasing computational demands in nanoscale ma-
terials modeling. In this field, electronic structure methods are used to mini-
mize the configurational energy and to calculate other physical properties of a
system of atoms. The mathematical core of these calculations is a generalized
eigenvalue problem of the form:

Axi = λi Bxi , i = imin, . . . , imax , (1)

where A and B are n × n real symmetric matrices, B is positive definite, and
imin and imax is the index range of requested eigenpairs. In our discussion and
numerical tests, the eigenvectors are normalized as xT

i Bxi = 1.
We use the density-functional-based tight-binding (DFTB) method [Elstner

et al. 1998] for materials modeling applications. The eigenproblems posed by
DFTB as studied in this article are distinguished by several features:

(1) The matrix pencil (A, B) is large and sparse. Its size n is proportional to the
number of atoms in the model. With an ultimate goal of simulating 50,000
atoms, the matrices are expected to be as large as n = 200,000.

(2) A large number of eigensolutions are requested; for example, 60% eigen-
values and the associated eigenvectors are wanted based on current DFTB
applications.

(3) The spectrum is pathologically difficult. It has clusters of hundreds of
tightly packed eigenvalues and very poor average relative eigenvalue sep-
aration:

ave
(

λi+1 − λi

λn − λ1

)
= O(n−1) (typically ≈ 10−5 in our study).

Even worse, some clusters are adjacent to gaps that have lengths far larger
than the average eigenvalue separation:

λ j+1 − λ j � ave (λi+1 − λi) .

(4) The global coupling of the nonzero elements in (A, B) gives rise to not-very-
sparse, or even to dense, matrix factorizations. For example, the matrix
factors of matrices with n = 16,000 under study, have sparse densities
ranging from 7% to 50%. By conventional sparse matrix standards, 7% is
still extremely dense.

(5) The simulation requires a significant number of iterations (possibly 1000s)
of Equation (1) with closely related matrices A and B.1

In this article, we consider the eigenvalue problem Equation (1) with the
features described above. It should be noted that these features place our prob-
lem in a class separate from well-studied sparse eigenproblems arising in finite
element methods. Those problems are larger by one or two orders of magnitude,
are more sparse, and the number of eigensolutions requested is typically lower,
in the range of 1 to 1000. Our discussion focuses on computing eigenvalues

1The matrix A contains a perturbation dependent on the solution vectors x, so that a fixpoint
solution is sought for a given position of atoms and fixed B. In an outer iteration, both matrices
depend on the positions of atoms being optimized or time-stepped.
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ordered increasingly from imin to imax, and their associated eigenvectors. The
discussion can easily be applied to other general forms, for example, computing
all eigenvalues in [a, b] and their eigenvectors.

Existing eigensolvers are customarily developed based on two types of matrix
storage: dense and sparse storage. They are typically solved by using direct
methods and iterative methods, respectively.

Direct methods compute all or almost all, eigensolutions of dense matri-
ces. They exhibit O(n3) time and O(n2) memory complexity. Library software
based on direct methods is provided in the LAPACK [Anderson et al. 1999] and
ScaLAPACK [Blackford et al. 1997] packages. Both have been used for DFTB,
but time and memory scaling prevents advancing to the larger nanoscale sys-
tems of current interest. In particular, our experience has shown that extensive
communication requirements in ScaLAPACK cause scaling problems on work-
station clusters with commodity networking hardware.

Iterative methods such as Lanczos [1950] and Jacobi-Davidson [Sleijpen and
van der Vorst 1996] are widely used for extracting a few extreme eigensolutions
of sparse matrices. Their time and space complexity is bound above by the
complexity of direct methods, yet they are usually much more efficient when the
matrices involved are indeed sparse. The available software includes ARPACK
[Lehoucq et al. 1998] and several others [Hernandez et al. 2005; Marques 1995;
Wu and Simon 1997]. When interior eigenvalues are requested, a practical
approach is to replace (A, B) by a shift-and-invert operation [Ericsson and
Ruhe 1980]:

Ax = λBx ⇐⇒ (A − σ B)x = (λ − σ )Bx, σ �= λ.

Setting

C = B(A − σ B)−1 and y = Bx,

we get an equivalent eigenvalue problem:

C y = λ̃ y , λ̃ = 1
λ − σ

. (2)

Employing Lanczos iterations to (2) leads to eigensolutions of the original equa-
tion (1) that are close to the shift σ .

DFTB and related methods for materials modeling require a large fraction
of eigensolutions—typically the lower 50% of the spectrum—with accurate ac-
counting for all requested eigenpairs and reliable orthogonalization in degen-
erate or nearly degenerate subspaces. Without significant customization, none
of the available iterative eigenvalue packages are able to provide sufficient effi-
ciency and robustness crucial to the modeling process. In this article we propose
SIPs, a new software package implementing shift-and-invert parallel spectral
transformations on top of the existing iterative eigensolver. We introduce an
eigenvalue algorithm in Section 2 and describe its implementation in Section
3. The implementation includes an object-oriented software design for perfor-
mance, portability, and reusability and techniques that build efficiency and
robustness into the proposed eigensolver. In Section 4 we present numerical
experiments using SIPs and compare our results with those from ScaLAPACK.
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We report on three systems of nanoscale materials with diverse characteristics,
focusing on the distinct sparse densities of the matrix factorization, a dominat-
ing factor for the performance of SIPs. In Section 5 we summarize our conclu-
sions and the impact of this work.

2. MULTIPLE SHIFT-AND-INVERT PARALLEL EIGENVALUE ALGORITHM

Based on the idea of distributed spectrum slicing, we propose concurrently using
Lanczos iterations with multiple shift-and-invert spectral transformations on
a distributed eigenvalue spectrum. This general approach has been studied
by others, for example, Bostic and Fulton [1987], Teranishi et al. [2003] and
Komzsik [2003], but our work is not limited to the algorithmic investigation.
We present a novel algorithm, based on which the software SIPs is developed
and used for solving applications in nanoscale modeling.

The Multiple Shift-and-Invert Parallel Eigenvalue Algorithm is described in
Figure 1. Initially, the user provides a requested eigenvalue interval. We divide
it into overlapping subintervals and assign each to a process. A process starts
from a shift in the middle of its interval and picks new shifts at the left and right
sides of the current shift. The bounds of processed subintervals are exchanged
between neighboring processes during the computation of local eigensolutions.
Using this information, each process adjusts its assigned subinterval, which
redistributes the initially assigned subintervals dynamically and balances the
parallel workload. Within each process, multiple shifts are selected one after
the other for computing all eigensolutions in the assigned subinterval.

For a single shift, the shift-and-invert spectral transformation enhances con-
vergence to the eigenpairs close to the shift. A well-chosen shift allows us to
compute tens to hundreds of eigensolutions with one to several Lanczos runs.
When a particular shift σ is chosen, we apply a matrix factorization:

A − σ B = LDLT , (3)

then feed it into a Lanczos iteration for generating a Krylov subspace. As a
byproduct, Equation (3) also provides ν(A − σ B), the number of eigenvalues
of (A, B) that are smaller than σ . For simplicity, we denote ν(σ ) = ν(A − σ B)
and refer to it as matrix inertia. This number is used for validating the eigen-
solutions computed through the shift σ . Each shift incurs an expensive matrix
factorization (3), and two further shifts σi, σ j are needed for checking the va-
lidity of eigensolutions in the interval (σi, σ j ). To make our solver efficient
and robust, we dynamically select a set of shifts that produces multiple sets of
eigensolutions at minimum redundancy, and we reuse these shifts to validate
the eigensolutions.

3. IMPLEMENTATION OF THE ALGORITHM

We now discuss the implementation of the Multiple Shift-and-Invert Paral-
lel Eigenvalue Algorithm. We start from the software design, then explain
the techniques for dynamically selecting shifts, bookkeeping locally computed
eigensolutions, maintaining parallel job balance, ensuring global accuracy of
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Fig. 1. Multiple shift-and-invert parallel eigenvalue algorithm.

the eigensolutions, and organizing subgroups of MPI communicators for pro-
cessing large-scale matrix operations.

3.1 Software Structure Design

The design objective of our eigensolver is to deliver high performance with
limited effort for development and maintenance and to enable portability and
reusability. Our design choices are guided by the following three major compo-
nents of the algorithm:

(1) Sequential and parallel sparse matrix operations, for example, matrix-
vector multiplication, matrix factorization, and triangular solve. These fun-
damental operations would dominate the performance of the eigensolver.

(2) Lanczos iterations with a single shift-and-invert spectral transformation.
(3) Sequential selection of multiple shifts, parallel distribution of the eigen-

value spectrum, and bookkeeping computed eigensolutions.

After examining software packages that implement (1) and (2), we choose
PETSc [Balay et al. 2006] and its add-on package, SLEPc [Hernandez et al.
2005]. PETSc provides us with sequential and parallel data structures and basic
operations that implement (1), while SLEPc offers built-in support for spectral
transformation and Lanczos eigensolvers required by (2). The first two items
listed in (3) have been studied by others. For instance, Grimes et al. [1994] and
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Fig. 2. Software structure.

Marques [1995] developed block Lanczos algorithms that include sophisticate
shift selection strategies. The sequential software BCSLIB-EXT that imple-
ments the proposed algorithm [Grimes et al. 1994] and BLZPACK were tested
on our DFTB eigenproblems and found to be unable to compute all the solutions
when the requested eigenvalue spectrum has large disparities. Parallel Lanc-
zos algorithms that have each process compute eigensolutions from different
shift-and-invert spectral transformations were proposed by Bostic and Fulton
[1987], Teranishi et al. [2003], and Komzsik [2003], along with numerical exam-
ples that demonstrate the feasibility of the idea of concurrent spectrum slicing.
However, to our knowledge, no work has given integrated consideration of all
the practical issues listed in (3), and there is no software package equipped
with the robustness and efficiency required by the DFTB eigenvalue problems.

Although PETSc and SLEPc provide adequate data and solver objects for im-
plementing (1) and (2), state-of-the-art special-purpose software packages exist
that either outperform, or are more reliable than PETSc and SLEPc on specific
tasks. Through interfaces provided by PETSc and SLEPc, we can easily make
use of these desirable packages. Because the direct sparse matrix factorization
and triangular solve dominate computational time, through a PETSc interface
we link to the MUltifrontal Massively Parallel sparse direct Solver (MUMPS)
[Amestoy et al. 2000, 2001] for such demanding computations. In addition, be-
cause of the pathological eigenvalue distribution, very few iterative eigenvalue
packages are able to deliver reliable solutions for our DFTB models. Among
them, we pick ARPACK, whose interface is provided by SLEPc.

To recapitulate, our task for the proposed algorithm (Figure 1) is to imple-
ment the component (3) as a new package on top of SLEPc and PETSc. We name
this new package Shift-and-Invert Parallel Spectral Transformations (SIPs).
Figure 2 illustrates our overall software design for implementing the Multiple
Shift-and-Invert Parallel Eigenvalue Algorithm described in Section 2.

Through the interfaces of PETSc and SLEPc, SIPs easily uses the external
eigenvalue package ARPACK and the parallel sparse direct solver MUMPS.
The packages can be upgraded or replaced without programming changes to
SIPs. SIPs itself implements the following major tasks:

(1) Select shifts;
(2) Bookkeep and validate eigensolutions;
(3) Balance parallel workload;
(4) Ensure global orthogonality of eigenvectors;
(5) Organize subgroups of MPI communicators.

We discuss technical details of these tasks in the next five subsections.
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3.2 Select Shifts

In the beginning, an initial shift σ0 is chosen at the midpoint of the subinterval
(λ(k)

min, λ(k)
max), which is assigned to the kth process. With it, a set of eigenvalues λ1,

λ2, . . . , λnev (in increasing order) close to σ0 is computed. To determine the next
two possible shifts, extending from the left and right of σ0, we adopt a strategy
similar to that proposed by Grimes et al. [1994]; that is, assuming the radii of
convergence for neighboring shifts are about the same, we can select the new
shift σ1 extending from the right of σ0 as:

σ1 = σ0 + 2δ, δ = max(|λ1 − σ0|, |λnev − σ0|). (4)

Our actual code uses a slightly more conservative estimate than the one above.
We use a queue to store all the selected shifts waiting for processing. In this

article, a shift is called active when it is taken from the head of this queue and
currently participates in the eigenvalue computation, pending when it waits on
the queue, and used after its Lanczos iterations are finished.

When a new shift σnew is selected from an active shift, it is appended to the
queue with the following data:

—σleft, σright: neighboring active or used shifts (thus their matrix inertias have
been computed). We call (σleft, σright) a pending interval in which the eigenval-
ues are either uncomputed, or computed but have not gone through a validity
check.

—ν(σleft), ν(σright): νright − νleft is the number of pending eigenvalues located in
(σleft, σright).

— isLext, isRext: information about which side of the active shift σnew is selected
or extended from.

For example, if σnew = σ1 is selected from the right of an active σ0; then it
has the attached data σleft = σ0, σright = λmax, ν(σleft) = ν(σ0), ν(σright) = imax,
isLext = false, and isRext = true. Similarly, σ2 is extended from left of σ0 and
attached with the data about its pending interval (λmin, σ0).

After all eigensolutions are computed from the active σi, and the possible new
shifts at each side of σi are selected and appended to the queue, we take σi+1
from the head of the queue and proceed to the next round of Lanczos iterations
until the queue becomes empty.

The shift selection process described here works well in normal situations,
namely under the assumption that neighboring shifts have roughly the same
radius of convergence. However the DFTB eigenvalue spectrum in general has
a very large disparity, and sometimes an eigenvalue cluster is adjacent to a gap
that is a thousand times larger than the convergence radius of the cluster, a
common phenomenon in industrial applications [Komzsik 2003]. When this oc-
curs, the next shift σi+1 likely falls into the adjacent gap and is closer to the just
computed cluster than to uncomputed eigenvalues located at the other side of
the gap. Using it, the eigensolver would recompute the just obtained eigenvalue
cluster at an extremely high number of Lanczos runs, or reach the maximum
number of Lanczos runs without getting any converged eigensolutions.
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To deal with this difficulty, we detect the gap and move the shift based on in-
formation from the pending interval (σleft, σright). For example, if σ has isRext =
true (extended from the right side of its parent shift) and ν(σ ) − ν(σleft) ≈ 0,
that is there are none or few eigenvalues in (σleft, σ ), then σ likely falls into a
gap. In this case, we move σ toward the right side of the pending interval (σleft,
σright):

σ := (1 − τ )σ + τσright, 0.5 ≤ τ < 1. (5)

The move (5) is repeated if a single move is not sufficient. Note that Equation (5)
assigns a new value to σ within its pending interval. While the pending interval
remains unchanged, the move requires a matrix factorization (3), which should
be applied only when necessary.

In DFTB calculations, the eigenvalue problem (1) is solved repeatedly,
each with a slightly modified matrix pencil (A, B). The previously computed
eigensolutions can be used as approximations to the solutions of the next
eigenvalue problem. In SIPs, we use computed eigenvalues or the Rayleigh
quotient of computed eigenvectors, denoted as {λ̂i}, as approximations to the
new eigenvalues. When the approximations are available, the new shifts are
selected based on this information. For example, the shift σ1 in Equation (4)
now can be selected as:

σ1 = λ̂i, i = ν(σ0) + nev.

The eigenvalue approximations {λ̂i} also indicate possible gap locations, so the
shifts would be chosen effectively away from gaps.

When a shift is very close to an eigenvalue, the matrix factorization (3) is
ill-conditioned. It is believed that it gives erroneous Krylov subspaces, and con-
sequently results in inaccurate or incomplete eigensolutions, or that such shifts
are useful only for computing isolated clusters of eigenvalues. Remarkably, in
our intensive tests, we have never encountered such an incident. For some test
problems, for example, the diamond crystal (see Section 4), the shifts frequently
fall into eigenvalue clusters, or the initial shifts are intentionally set to the clus-
tered eigenvalues computed from either ScaLAPACK or SIPs. In these cases,
SIPs is still able to compute satisfying nearby eigensolutions without behavior
distinguishable from that at other shifts.

While a serious investigation and rigorous analysis remains to be conducted,
we believe the ARPACK and MUMPS generated nondeficient Krylov subspaces
with the chosen parameters. From the rounding-error analysis for the in-
verse power method [Parlett 1998], most inaccuracies resulting from the ill-
conditioned matrix factorization are perhaps in the directions of the computed
vectors, which span the Krylov subspaces during the Lanczos iterations. These
inaccuracies do not introduce any significant errors in the computed eigenso-
lutions.

A difficulty we did encounter is the case in which clustering eigenvalues
located away from the selected shift were computed with eigenvectors miss-
ing. This results in inaccurate eigenvalue indices and leads to Case 1 with
unmatched indices as described in the next section. These eigensolutions will
be recomputed by SIPs using closer shifts, as explained in Section 3.3.
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When a shift is identical to an eigenvalue, the matrix operation returns a
value indicating the singularity of the factorization. Adopting the industry stan-
dard solution [Komzsik 2003], we perturb the shift and repeat the matrix fac-
torization. In other special cases, selected shifts need to be adjusted or dumped
when their pending intervals become empty because of changes made before
becoming active. In this article, however, we concentrate on major techniques
used by SIPs and skip technical description of minor cases.

3.3 Bookkeep and Validate Eigensolutions

We use a structure array in C, named Local Solution List, to store eigensolutions
computed by a process. Each element in the array represents an eigensolution:

typedef struct {
PetscReal *val,*sval; /* eigenvalues, eigenvalue singletons */
PetscInt *smap; /* maps singletons to eigenvalues */
Vec *vec; /* eigenvectors */
PetscInt *status; /* one of status: UNCOMPUT, COMPUT, or DONE */
PetscInt *mult,*smult; /* multiplicity of eigenvalues and singletons */
} EVSOL;

The initial length of the list in process k is set as ik+1 − ik (see Figure 1). When a
set of eigensolutions is computed through a shift σ , the eigenvalues are ordered
as:

λ1 ≤ · · · ≤ λi < σ < λi+1 ≤ · · · ≤ λnev. (6)

We use a degeneracy (multiplicity) tolerance, toldeg, to group degenerate or
nearly degenerate eigenvalues into eigenvalue singletons (groups of numeri-
cally degenerate eigenvalues). The maximum number of eigenvalues in a sin-
gleton, smult, is referred to as the singleton’s multiplicity. Accordingly, any two
adjacent eigenvalues in a singleton satisfy 0 ≤ λ j+1 − λ j ≤ toldeg, and the the
separation between the eigenvalues in and out of a singleton is larger than
toldeg.

Using the matrix inertia ν(σ ), we can compute absolute indices for the com-
puted eigenvalues; for example, λi is the ν(σ )-th eigenvalue of (A, B). These val-
ues are checked or compared with the ones already on the Local Solution List.
The newly computed eigensolutions assigned to this process are then added
onto the list together with relevant data.

Because of the existence of multiple and clustering eigenvalues, some eigen-
solutions with values between λ1 and λnev might not be computed. Without
further validating the computed eigensolutions, those put on the list cannot be
trusted yet. The validity check is implemented by verifying whether a computed
eigenvalue is in a trusted interval, by which we mean the number of eigenval-
ues expected in the interval agrees with the number actually computed [Grimes
et al. 1994].

Establishing a trust interval (a, b) requires matrix inertias at a and b, as well
as the total number of computed eigenvalues in it. Because matrix factorization,
Equation (3), is expensive, we want to limit its invocation to the necessary
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shift-and-invert Lanczos iterations. The trust intervals are then established by
reusing the active and used shifts.

Before any eigensolution is computed, its status on the Local Solution List is
initialized as UNCOMPUT. When a set of eigensolutions is computed through
the initial shift σ0 and added to the Local Solution List, the status of these
solutions is upgraded to COMPUT. Assume a new shift σ1 (> σ0) becomes active.
It will generate a new set of eigensolutions in one of the following two cases:

Case 1. An eigenvalue λ(1) (< σ1) overlaps a previously computed eigenvalue
λ(0) (> σ0). Using matrix inertia ν(σ0) and ν(σ1), the overlapping eigenvalues
λ(1) = λ(0) obtain two eigenvalue indices.

If both the indices and the eigenvalue multiplicities match, the number
of actually computed eigensolutions in (σ0, σ1) matches the expected number
ν(σ1)−ν(σ0). Thus (σ0, σ1) is a trusted interval. All the solutions in this interval
pass the validity check. Their status is then upgraded to DONE. Those not lo-
cated inside a trusted interval have status COMPUT. Replicated eigensolutions
are discarded.

When the indices do not match for all the overlapping eigenvalues, the newly
computed eigensolutions are put on the list with status COMPUT. A new shift
is selected somewhere between σ0 and σ1.

Case 2. None of the newly computed eigenvalues overlap the ones already
on the Local Solution List. Then the status COMPUT is set for all newly com-
puted eigensolutions. New shifts are selected at both sides of the active shift σ1
by the shift selection process described in Section 3.2.

This bookkeeping process repeats recursively until all the solutions on the Local
Solution List have status DONE.

3.4 Balance Parallel Workload

The workload for each process is proportional to the assigned number of eigen-
solutions ik+1 − ik or the length of the assigned eigenvalue spectrum (λ(k)

min, λ(k)
max)

(see Figure 1), and can be dramatically affected by the eigenvalue distribution.
In general, an accurate a priori workload estimate is impossible.

For the kth process, we name the interval (λ(k)
min, λ(k)

max) assigned to this pro-
cess for eigenvalue computation the assigned spectrum. We call [σ (k)

min, σ (k)
max] the

computed spectrum, where σ
(k)
min and σ (k)

max are the smallest and the largest local
active or used shifts.

We balance parallel workload through dynamically updating the assigned
spectrum during computation, which can be viewed as a particular implemen-
tation of diffusive load balancing [Corradi et al. 1999]. Initially, we distribute
overlapping assigned spectra into processes, then reduce the overlap through
neighboring exchanges of computed spectra.

Using np processes, we initially pick np points inside the requested global
eigenvalue spectrum (λmin, λmax):

λmin < σ
(0)
0 < σ

(1)
0 < · · · < σ

(np−1)
0 < λmax,
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Fig. 3. Assigned spectrum (dashed line) and computed spectrum (bold line). (a) before updating.
(b) after updating.

and form overlapping assigned spectra,
(
σ

(k−1)
0 , σ

(k+1)
0

)
, k = 0, . . . , np − 1,

(
σ

(−1)
0 = λmin, σ

(np)
0 = λmax

)
.

Process k takes σ
(k)
0 as its initial shift, and expands its initial computed spec-

trum [σ (k)
min = σ

(k)
0 , σ (k)

max = σ
(k)
0 ] outward by selecting new shifts from both sides of

σ
(k)
0 as described in the previous sections. When a new σ

(k)
min or σ (k)

max is computed
(e.g., a new σ (k)

max), it is sent to the neighbor process k +1. Upon receiving it, pro-
cess k + 1 is informed that [σ (k)

0 , σ (k)
max], a portion of its assigned spectrum, has

been processed by process k. Then process k + 1 updates its assigned spectrum
by moving its λ

(k+1)
min from σ

(k)
0 inward to σ (k)

max. Figure 3 illustrates this scheme.
Assigning overlapping spectra enables some processes to compute more

eigensolutions than others in the same time period. As computed spectra ex-
pand from the middle of assigned spectra at various rates, each process re-
ceives information about its neighbors’ computed spectra and updates its own
assigned spectrum. This procedure dynamically reassigns the workload among
processes. At the end, np computed spectra cover the user requested global
eigenvalue spectrum (λmin, λmax) with minimum overlap. Duplicate eigensolu-
tions are dumped at the final phase of the computation, in Step (3) of Figure 1.

All processes implement this procedure by using asynchronous neighboring
communication of short messages. We stress that the communication cost in-
curred is insignificant compared with the computational cost.

3.5 Accuracy of the Eigensolutions

In this section, we show how to ensure that the accuracy of the proposed eigen-
solver, by which we mean the residual norms

||ri|| = ||Axi − λi Bxi||2, (7)
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fall within user specified tolerance, and that the orthogonalities:

ϑi j = ∣∣xT
i Bx j − δi j

∣∣, δi j =
{

0 for i �= j
1 for i = j , (8)

of all computed eigenpairs are confined to the uniformed order.
SIPs provides a set of user tunable parameters; among them, the three pa-

rameters required by the external Lanczos iteration package would strongly
impact the accuracy and reliability of the computation:

—tol: the relative residual tolerance;
—nev: the number of eigenvalues requested for each given shift σ ;
—ncv: the maximum dimension of the restart Krylov subspace.

A tight residual tolerance tol is crucial for obtaining a complete set of requested
eigensolutions from a single shift-and-invert spectral transformation and en-
suring the orthogonality of the computed eigenvectors within the same shift.
The parameter ncv needs to be larger than the number of eigenvalues in a
singleton.

The residual norms of all computed eigenpairs and the orthogonalities of the
eigenvectors obtained from the same shift are inherited from the external eigen-
value software package that SIPs is built on, specifically, ARPACK [Lehoucq
et al. 1998] in our current implementation. The ARPACK parameters nev and
ncv are chosen to ensure that each eigenvalue singleton is computed through a
single shift-and-invert transformation. Our numerical experiments show that
ARPACK gives satisfying eigensolutions when the user provides sufficiently
small error tolerance (see Section 4).

What remains to be addressed regarding the accuracy of eigensolutions is the
orthogonality between eigenvectors computed from different shift-and-invert
transformations.

Let us assume (λi, xi) and (λ j , x j ) are computed from two different shifts with
the residual norms ||ri|| and ||r j || bounded by tol . From xT

i r j − xT
j ri, we get the

equation:

xT
i Bx j = 1

λi − λ j

(
xT

i r j − xT
j ri

)
.

Note, the eigenvalues in a singleton are computed through the same shift, thus
|λi − λ j | ≥ toldeg because λi and λ j belong to different singletons (see Section
3.3). The above equation then yields:

∣∣xT
i Bx j

∣∣ ≤ c
|λi − λ j | tol ≤ c

tol
toldeg

, c is a constant depending on B.

In SIPs, we set toldeg = √
tol as the default, then the computed eigenvectors xi

and x j are orthogonal within: ∣∣xT
i Bx j

∣∣ ≤ c
√

tol ,

which is satisfactory in most practical cases. Users have option to set toldeg
based on their own need.
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Fig. 4. Communicator layout.

3.6 Organize Subgroups of MPI Communicators

Up to this point, the discussion on SIPs has assumed that Step (2) of the Multi-
ple Shift-and-Invert Parallel Eigenvalue Algorithm (see Figure 1) is processed
sequentially; that is, a single process holds the entire matrix pencil (A, B) and
implements shift-and-invert Lanczos iterations at distributed shifts. As the size
of the eigenproblem increases, the local memory space becomes a limiting fac-
tor for holding the matrix factorization and distributed eigenvectors. In this
situation, we must have multiple processes to provide adequate storage space
collectively and execute matrix operations concurrently.

We cope with this local memory limitation by organizing subgroups of MPI
communicators [Gropp et al. 1999]. An MPI communicator defines a context
or scope for parallel communication. For example, MPI COMM SELF and
MPI COMM WORLD are two default communicators normally used in MPI-
based parallel programs. New communicators can be created by spliting exist-
ing ones for restricted communications. In SIPs, we introduce two new com-
municators, called commEps and commMat, by spliting MPI COMM WORLD
into a 2D process grid. Each communicator commEps and commMat has
npEps and npMat processes, for which we assume npEps × npMat = np,
the total number of processes in MPI COMM WORLD. Within each comm-
Mat, npMat processes concurrently implement operations described in the
Multiple Shift-and-Invert Parallel Eigenvalue Algorithm (Figure 1) as sequen-
tial operations, which are primarily matrix operations. Every process also be-
longs to a communicator commEps, by which they exchange information about
computed spectra for balancing workload among commEps, as discussed in
Section 3.4. Figure 4 illustrates the layout of a 4(npEps) × 3(npMat) process
grid.

The process grid partitioning scheme described here shares interesting sim-
ilarity with the frequency and geometric domain decomposition proposed by
Komzsik [2003].
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4. NUMERICAL EXPERIMENTS AND COMPARISON

From algorithmic analysis and numerical experiments, we find that the per-
formance of our eigensolver is dominated by the computational cost of matrix
factorizations and triangular solves. The communication time is ignorable when
npMat = 1, and remains insignificant as npMat is increased to meet memory
demand. When npMat = 1, SIPs exchanges only neighboring short messages
that overlap with computation. When the matrix size becomes too large to be
held on a single process, npMat is increased to the minimum number of pro-
cesses for storing the matrix factorization. For our largest tests, npMat = 4
was sufficient to satisfy the memory demand. The communications within the
small MPI communicators commMat remain insignificant for the total execu-
tion time.

We tested SIPs on eigenvalue problems arising from DFTB models of various
materials and dimensionality. To give a balanced evaluation on SIPs’ perfor-
mance, we present here numerical results for three representative systems:

(1) a single-wall carbon nanotube2;
(2) a diamond nanowire3;
(3) a diamond crystal.4

We built each system at varying physical sizes, resulting in a consistent set of
matrix sizes up to n = 64,000. For the first two test systems, one-dimensional
periodic boundary conditions are applied in the physical model, and three-
dimensional ones for the last system. The nature of the test systems and their
physical boundary conditions are reflected in distinct initial sparsity patterns of
the matrices A and B, and the resulting sparse densities of their factorizations.
For example, when n = 16,000, the sparse densities of the matrix factoriza-
tions are 7% for the nanotube (fairly sparse), 15% for the nanowire, and 50%
for diamond (dense).

The numerical experiments were performed on a Linux cluster called Jazz, at
Argonne National Laboratory. Jazz comprises 350 computing nodes, each with a
2.4 GHz Pentium Xeon processor and a connection to both Myrinet and Ethernet
communication networks. Nodes are equipped with at least 1 GB RAM.

In our experiments, we set ncv = 200, and nev ≤ ncv/2. For all tests ex-
cept the few cases discussed below, we specify the input relative residual tol-
erance as tol = 10−8. All eigensolutions achieve the absolute residual norm
||ri|| from O(10−10) to O(10−12), Equation (7), and the numerical orthogonality
ϑi j < 10−8, Equation (8). As future work, we plan to add a scheme that auto-
matically adjusts these sensitive parameters when clustering eigenvalues are
detected. Other user input parameters, such as the global eigenvalue bound
(λmin, λmax) would affect the load balance in the first run of the eigenvalue
problem, because the initial local shifts are chosen from it. Without a priori

2A (10,0) armchair-tube with diameter 1.36 nm; 20 atoms on the circumference, at varying length.
3Oriented along the (001) crystal direction with (110) faces and a cross section of (1.14 nm)2, 25
atoms per layer, at varying length.
4Same orientation as the nanowire, with periodic boundary conditions in all three dimensions, at
varying size of the supercell.
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Fig. 5. Execution time for a single-wall carbon nanotube system on Myrinet (left) and Ethernet
(right).

information about the eigenvalue spectrum, some processes get an empty as-
signed spectrum. Because the focus of this work is on the successive runs of
the eigenvalue problem (1), these processes are left idle until next run in our
current implementation. This leads to a load imbalance during the first run
and typically results in about twice the execution time as for successive runs.
Improving the job balancing when a priori spectral information is not available
will also be considered in future work.

Figures 5–7 show the execution time for computing the lowest 60% of the
eigenvalues and the associated eigenvectors for the test systems. Timings are
collected from the second run of the eigenvalue problem (1), in which the previ-
ously computed eigensolutions provide initial eigenvalue approximations {λ̂i}
as discussed in Section 3.2. This is because the eigenvalue problem (1) is solved
many times using initial eigenvalue approximations except for the first run.
When the initial approximation {λ̂i} is not available, the execution time of the
current version of SIPs is sensitive to the user input data (λmin, λmax) and the
initial distribution of assigned spectra. As noted above, with sensible spectral
bounds,5 the initial run typically takes up to twice the time of the successive
executions of the eigenvalue problem Equation (1).

Figure 5 shows the execution time for a single-wall carbon nanotube system
on Myrinet (left) and Ethernet (right). For matrix sizes n = 6, 400 to n = 32,000,
we use npMat = 1 because the memory per node is sufficient for holding the
entire matrix factorization. When n ≥ 48,000, we increase to npMat = 4. The
sudden increase of execution time from n = 32,000 to n = 48,000 is caused
by the delay of parallel matrix factorizations and triangular solves as imple-
mented by MUMPS. Normally, one should not anticipate an ideal speedup of
np when increasing the number of processes from 1 to np because of commu-
nication, algorithmic limitations and other overhead in parallel processing. We

5We note that in a materials modeling application like DFTB, the eigenvalue search interval (λmin,
λmax) is known reasonably well, either from general materials properties or from traditional cal-
culations of a smaller system.
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Fig. 6. Execution time for a diamond nanowire system on Myrinet (left) and Ethernet (right).

Fig. 7. Execution time for a diamond crystal system on Myrinet (left) and Ethernet (right).

find that for the same test system on the same number of processes, the ex-
ecution time with npMat = 4 is approximately twice and five times as long
as the case with npMat = 1 on Myrinet and Ethernet respectively. This indi-
cates the speedup of matrix factorization and triangular solve implemented by
MUMPS is approximately 2 from 1 process to 4 processes on Myrinet. We also
observe much better speedups on our systems by MUMPS when the number of
processes is increased from 4 processes to 16 or 64. When the problem size n
becomes large (e.g., n ≥ 48,000), we notice that among more than ten thousands
of computed eigensolutions, one or two pairs of eigenvectors lose orthogonality.
These eigenvectors are computed from the same shift. Therefore, we tighten the
error tolerance to tol = 10−11 for the cases of n = 48,000 and n = 64,000. The
resulting execution times are about 3% higher than the cases with tol = 10−8.
Actually, it is only necessary to apply such strict error tolerance to the few
shifts from which highly clustered eigensolutions are computed. What we need
here is an a priori estimate for eigenvalue clusters, based on which the error
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tolerances can be adjusted dynamically. This is a subject for future development
of SIPs.

Figure 5 includes a comparison with ScaLapack timings, specifically the sub-
routine PDSYGVX(), which is an expert driver routine for the symmetric gen-
eralized eigenproblem 1. All our ScaLAPACK tests refer to this subroutine.
The figure clearly shows that the execution time scales with the problem size
n as O(n2) for SIPs and O(n3) for ScaLAPACK. For a fixed problem size n,
SIPs achieves a speedup of 3 or higher whenever the number of processes is
increased 4 times. Because the matrices involved are sparse for this system,
SIPs is significantly faster than ScaLAPACK; for example, for a problem size
n = 16,000 using 64 processes, SIPs takes approximately 4 minutes vs. ScaLA-
PACK’s 13, and 37 minutes on Myrinet and Ethernet respectively. ScaLAPACK
fails to compute problems with a size larger than 19,200 due to memory limita-
tions, while SIPs solves problems up to n = 64,000. Thus far, we have not seen
any indication of memory restriction for SIPs.

Figure 6 shows the execution time for a diamond nanowire system with
npMat = 1. The matrix factors involved are about twice as dense as in the pre-
vious system, with a density quantified somewhere between sparse and dense.
SIPs takes a much longer execution time on this system as compared to the
previous one that has sparser matrix factorizations, for example, 27 minutes
versus 9 minutes for n = 32,000 and np = 64. However, the SIPs execution time
still scales O(n2) with the problem size n. As the problem size increases, SIPs
becomes faster than ScaLAPACK with increased performance on both Myrinet
and Ethernet.

For the last system, a diamond crystal, the matrix factorizations are dense,
with approximately 50% nonzero entries. Moreover, the spectrum has larger
clusters and gaps than other tested systems. We must provide tighter error
tolerance tol ≤ 10−12 to ARPACK for computing a complete set of eigensolutions
from each shift. Figure 7 shows that ScaLAPACK is faster than SIPs on Myrinet,
but its expensive communication cost on 64 processes with Ethernet pulls its
performance behind SIPs. Because the matrices involved are dense, SIPs scales
with the problem size n worse than O(n2), but still scales better than O(n3)
(note the slopes of the curve). When n > 16,000, the memory available per node
becomes too small for the matrix factorization, so we increase npMat = 1 to
npMat = 4; hence, the execution time jumps at n = 19, 200.

Summarizing all three test systems, we find the following. First, SIPs re-
quires far less memory than does ScaLAPACK, which enables solutions of much
larger eigenvalue problems. Second, ScaLAPACK requires extensive data com-
munications as the number of processes or the problem size increases. Its perfor-
mance is heavily affected by the speed of network. SIPs’ communication cost is
ignorable when npMat = 1, and remains insignificant for npMat = 4. Third, for
matrices with sparse factorizations, the computational time for SIPs scales as
O(n2) versus O(n3) for ScaLAPACK. SIPs’ computational time strongly depends
on the sparsity of the matrix factorization Equation (3). Although the number
of collected data points is insufficient to draw a concluding scale, all systems to-
gether bear out the theoretical prediction O(n∗ nnz), where nnz is the number
of nonzero entries in the matrix factorization Equation (3). For matrices with
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sparse factorizations, the computational time is significantly smaller than for
the ones with dense factorizations, for example, 21 minutes for the carbon nan-
otube system versus 3.5 hours on the diamond crystal system with np = 4 and
n = 16,000. Moreover, SIPs is robust, giving accurate solutions for all the tested
systems that have extremely pathological spectrums. For example, the carbon
nanotube system with n = 64,000 has more than 30,000 requested eigenvalues
clustered in a relatively tiny interval (−0.9, 0.1). SIPs delivers all eigensolu-
tions with the residual norms ||ri|| ≤ O(10−10), Equation (7), orthogonality
ϑi j = O(10−8), Equation (8), and satisfying efficiency.

5. CONCLUSIONS

This article describes SIPs, a new efficient and robust software package imple-
menting multiple shift-and-invert spectral transformations on parallel com-
puters. It is developed on top of PETSc, SLEPc, ARPACK, and MUMPS for
computing a large number of solutions of sparse real symmetric generalized
eigenvalue problems.

We presented the algorithm and detailed implementation techniques. We
demonstrated parallel numerical experiments on a set of selected eigenvalue
problems from nanoscale materials modeling. A comparison of SIPs with
ScaLAPACK on both fast and slow communication networks shows that SIPs
(1) requires much less memory; (2) scales O(n2) vs. ScaLAPACK’s O(n3) with
the problem size n when the shifted matrix (A − σ B) has sparse or not-very-
dense matrix factorization; and (3) is robust, capable of computing large and
pathological eigenvalue problems with high accuracy.

The object-oriented design makes SIPs applicable to most available Lanczos-
based eigensolvers, especially the solvers provided or interfaced by SLEPc.
Through this design, SIPs immediately inherits flexibility and portability from
PETSc, functionalities of eigenvalue computation from SLEPc, and perfor-
mance and robustness from the state-of-the-art external sparse matrix solvers
(MUMPS and ARPACK in our current implementation).

The work reported here is not restricted to the eigenvalue problems posed
by the DFTB method. It is a general robust eigensolver applicable to a wide
range of sparse symmetric generalized eigenvalue problems. SIPs or its design
and algorithmic approach can be adopted to leverage existing sparse eigenvalue
software packages.
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