<div dir="ltr">Is there more output from the line search?  What happens when you run with -snes_linesearch_monitor?  I remember there being a reason that I didn't put this update in the maintenance branch.  Let me figure out exactly why and get back to you.<br>
<div class="gmail_extra"><br><br><div class="gmail_quote">On Mon, Mar 17, 2014 at 5:37 PM, Dafang Wang <span dir="ltr"><<a href="mailto:dafang.wang@jhu.edu" target="_blank">dafang.wang@jhu.edu</a>></span> wrote:<br>

<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
  
    
  
  <div bgcolor="#FFFFFF" text="#000000">
    Hi Peter,<br>
    <br>
    My version of PETSc (v3.4.3) does not contain the bug fix you
    mentioned:<br>
    
    "+      ierr =
    SNESLineSearchSetNorms(linesearch,xnorm,fnorm,ynorm);CHKERRQ(ierr);"
    <br>
    Would that be a problem?  <br></div></blockquote><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div bgcolor="#FFFFFF" text="#000000">
    I typically used the default value of -snes_stol, never setting it
    to zero. I will let you know soon if you believe this is important.<br>
    <br></div></blockquote><div><br></div><div>It would certainly be worth a try.</div><div><br></div><div>- Peter</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">

<div bgcolor="#FFFFFF" text="#000000">
    Cheers,<br>
    Dafang<div><div><br>
    <br>
    <div>On 03/17/2014 06:27 PM, Peter Brune
      wrote:<br>
    </div>
    <blockquote type="cite">
      <div dir="ltr">
        <div>This may be related to a bug we had reported before to
          petsc-maint:</div>
        <div><br>
        </div>
        <div><a href="https://bitbucket.org/petsc/petsc/commits/ced04f9d467b04aa83a18d3f8875c7f72c17217a" target="_blank">https://bitbucket.org/petsc/petsc/commits/ced04f9d467b04aa83a18d3f8875c7f72c17217a</a><br>
        </div>
        <div><br>
        </div>
        <div>  What version of PETSc are you running?  Also, what
          happens if you set -snes_stol to zero?</div>
        <div><br>
        </div>
        <div>Thanks,</div>
        <div><br>
        </div>
        <div>- Peter</div>
      </div>
      <div class="gmail_extra"><br>
        <br>
        <div class="gmail_quote">On Mon, Mar 17, 2014 at 5:19 PM, Dafang
          Wang <span dir="ltr"><<a href="mailto:dafang.wang@jhu.edu" target="_blank">dafang.wang@jhu.edu</a>></span>
          wrote:<br>
          <blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
            Hi Barry,<br>
            <br>
            Thanks for your tips. I have read the webpage you mentioned
            many times before, but still I have been stuck on the
            line-search problem for weeks.<br>
            <br>
            I cannot guarantee my Jacobian is correct but I believe an
            incorrect Jacobian is very unlikely. My Jacobian-calculation
            code has been under test for a year with both analytical and
            realistic models, and the results have been good until
            recently when I ran a very realistic physical model.<br>
            <br>
            Also, I looked up the implementation of SNESSolve_NEWTONLS()
            in "ls.c". According to the algorithm, when the function
            "SNESLineSearchApply()" does not succeed, one may encounter
            two possible outcomes: CONVERGED_SNORM_RELATIVE (if the
            search step is too small) or otherwise,
            DIVERGED_LINE_SEARCH. Does this mean that both these two
            outcomes indicate that the line search fails?<br>
            <br>
            I ask this question because my simulation encountered many
            CONVERGED_SNORM_RELATIVE. I treated them as if my nonlinear
            system converged, accepted the nonlinear solution, and then
            proceeded to the next time step of my simulation.
            Apparently, such practice has worked well in most cases,
            (even when I encountered suspicious DIVERGED_LINE_SEARCH
            behaviors). However, I wonder if there are any potential
            pitfalls in my practice such as missing a nonlinear solve
            divergence and taking a partial solution as the correct
            solution.<br>
            <br>
            Thank you very much for your time and help.<br>
            <br>
            Best,<br>
            Dafang
            <div>
              <div><br>
                <br>
                On 03/15/2014 11:15 AM, Barry Smith wrote:<br>
                <blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
                      Failed line search are almost always due to an
                  incorrect Jacobian. Please let us know if the
                  suggestions at <a href="http://www.mcs.anl.gov/petsc/documentation/faq.html#newton" target="_blank">http://www.mcs.anl.gov/petsc/documentation/faq.html#newton</a>
                  don’t help.<br>
                  <br>
                      Barry<br>
                  <br>
                  On Mar 14, 2014, at 8:57 PM, Dafang Wang <<a href="mailto:dafang.wang@jhu.edu" target="_blank">dafang.wang@jhu.edu</a>>
                  wrote:<br>
                  <br>
                  <blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
                    Hi,<br>
                    <br>
                    Does anyone know what the error code
                    DIVERGED_LINE_SEARCH means in the SNES nonlinear
                    solve? Or what scenario would lead to this error
                    code?<br>
                    <br>
                    Running a solid mechanics simulation, I found that
                    the occurrence of DIVERGED_LINE_SEARCH was very
                    unpredictable and sensitive to the input values to
                    my nonlinear system, although my system should not
                    be that unstable. As shown by the two examples
                    below, my system diverged in one case and converged
                    in the other, although the input values in these two
                    cases differed by only 1e-4,<br>
                    <br>
                    Moreover, the Newton steps in the two cases were
                    very similar up to NL step 1. Since then, however,
                    Case 1 encountered a line-search divergence whereas
                    Case 2 converged successfully. This is my main
                    confusion. (Note that each residual vector contains
                    3e04 DOF, so when their L2 norms differ within 1e-4,
                    the two systems should be very close.)<br>
                    <br>
                    My simulation input consists of two scalar values
                    (p1 and p2), each of which acts as a constant
                    pressure boundary condition.<br>
                    <br>
                    Case 1, diverge:<br>
                    p1= -10.190869   p2= -2.367555<br>
                       NL step  0, |residual|_2 = 1.621402e-02<br>
                           Line search: Using full step: fnorm
                    1.621401550027e-02 gnorm 7.022558235262e-05<br>
                       NL step  1, |residual|_2 = 7.022558e-05<br>
                           Line search: Using full step: fnorm
                    7.022558235262e-05 gnorm 1.636418730611e-06<br>
                       NL step  2, |residual|_2 = 1.636419e-06<br>
                    Nonlinear solve did not converge due to
                    DIVERGED_LINE_SEARCH iterations 2<br>
                    Case 2: converge:<br>
                    p1= -10.190747 p2= -2.367558<br>
                       NL step  0, |residual|_2 = 1.621380e-02<br>
                           Line search: Using full step: fnorm
                    1.621379778276e-02 gnorm 6.976373804153e-05<br>
                       NL step  1, |residual|_2 = 6.976374e-05<br>
                           Line search: Using full step: fnorm
                    6.976373804153e-05 gnorm 4.000992847275e-07<br>
                       NL step  2, |residual|_2 = 4.000993e-07<br>
                           Line search: Using full step: fnorm
                    4.000992847275e-07 gnorm 1.621646014441e-08<br>
                       NL step  3, |residual|_2 = 1.621646e-08<br>
                    Nonlinear solve converged due to
                    CONVERGED_SNORM_RELATIVE iterations 3<br>
                    <br>
                    Aside from the input values, the initial solution in
                    both cases may differ very slightly. (Each case is
                    one time step in a time-sequence simulation. The two
                    cases behaved nearly identically up to the last time
                    step before the step shown above, so their initial
                    solutions may differ by a cumulative error but such
                    error should be very small.)  Is it possible that
                    little difference in initial guess leads to
                    different local minimum regions where the line
                    search in Case 1 failed?<br>
                    <br>
                    Any comments will be greatly appreciated.<br>
                    <br>
                    Thanks,<br>
                    Dafang<br>
                    -- <br>
                    Dafang Wang, Ph.D<br>
                    Postdoctoral Fellow<br>
                    Institute of Computational Medicine<br>
                    Department of Biomedical Engineering<br>
                    Johns Hopkins University<br>
                    Hackerman Hall Room 218<br>
                    Baltimore, MD, 21218<br>
                  </blockquote>
                </blockquote>
                <br>
                -- <br>
                Dafang Wang, Ph.D<br>
                Postdoctoral Fellow<br>
                Institute of Computational Medicine<br>
                Department of Biomedical Engineering<br>
                Johns Hopkins University<br>
                Hackerman Hall Room 218<br>
                Baltimore, MD, 21218<br>
              </div>
            </div>
          </blockquote>
        </div>
        <br>
      </div>
    </blockquote>
    <br>
    <div>-- <br>
      Dafang Wang, Ph.D <br>
      Postdoctoral Fellow <br>
      Institute of Computational Medicine <br>
      Department of Biomedical Engineering <br>
      Johns Hopkins University <br>
      Hackerman Hall Room 218 <br>
      Baltimore, MD, 21218</div>
  </div></div></div>

</blockquote></div><br></div></div>