<div dir="ltr">Barry,<div><br></div><div>Thanks. I see.</div></div><div class="gmail_extra"><br><br><div class="gmail_quote">On Tue, Feb 18, 2014 at 6:56 PM, Barry Smith <span dir="ltr"><<a href="mailto:bsmith@mcs.anl.gov" target="_blank">bsmith@mcs.anl.gov</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div class=""><br>
On Feb 18, 2014, at 5:39 PM, Fande Kong <<a href="mailto:fd.kong@siat.ac.cn">fd.kong@siat.ac.cn</a>> wrote:<br>
<br>
> Hi all,<br>
><br>
> I am just trying to solve a nonlinear system resulted from discretizating a hyperelasticity problem by finite element method. When I solve a linear PDE, I never put boundary solution either in a solution vector or a matrix, but instead, I put boundary condition to the right hand size (load).<br>
<br>
</div> You adjust the right hand side to have zero as the boundary conditions. This can be written as<br>
<br>
(A_II A_IB ) ( X_I ) (F_I)<br>
(A_BI A_BB)(X_B) = (F_B)<br>
<br>
Which is equivalent to<br>
<br>
(A_I A_B) (X_I) (F_I) - (A_B)*(X_B)<br>
(0) =<br>
<br>
A_I X_I = F_I - A_B*X_B<br>
<br>
In the nonlinear case you have<br>
<br>
F_I(X_I,X_B) = ( 0 )<br>
F_B(X_I,X_B) ( 0)<br>
<br>
where you know X_B with Jacobian<br>
<br>
(J_II J_IB)<br>
(J_BI J_BB)<br>
<br>
Newtons’ method on all variables gives<br>
<br>
(X_I)^{n+1} = (X_I)^{n} + (Y_I)<br>
(X_B) (X_B) (Y_B)<br>
<br>
where JY = F which written out in terms of I and B is<br>
<br>
(J_II J_IB) (Y_I) = F_I( X_I,X_B)<br>
(J_BI J_BB) (Y_B) F_B(X_I,X_B)<br>
<br>
Now since X_B is the solution on the boundary the updates on the boundary at zero so Y_B is zero so this system reduces to<br>
<br>
J_II Y_I = F_I(X_I,X_B) so Newton reduces to just the interior with<br>
<br>
(X_I)^{n+1} = (X_I)^{n} + J_II^{-1} F_I(X_I,X_B)<br>
<br>
Another way to look at it is you are simply solving F_I(X_I,X_B) = 0 with given X_B so Newton’s method only uses the Jacobian of F_I with respect to X_I<br>
<span class="HOEnZb"><font color="#888888"><br>
Barry<br>
</font></span><div class="HOEnZb"><div class="h5"><br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
> How can I do a similar thing when solving a nonlinear system using a newton method?<br>
><br>
> Thanks,<br>
><br>
> Fande,<br>
<br>
<br>
</div></div></blockquote></div><br></div>