<div dir="ltr"><div>Sorry, I made a mistake in privous email. <br></div>in my output file, the <i>KSP residual norm</i> not the rtol is 1.0e-4 at the 1st iteration. My question is how this residual norm calculated? Is there any initial guess there? thanks<br>
</div><div class="gmail_extra"><br><br><div class="gmail_quote">On Mon, Nov 11, 2013 at 11:55 AM, Qiyue Lu <span dir="ltr"><<a href="mailto:qiyuelu1@gmail.com" target="_blank">qiyuelu1@gmail.com</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><div><div><div><div><div>Dear All:<br><br></div><div>I am working on a linear A*x=b system. <br></div>
When I use <i>-ksp_rtol 1.0e-5 </i>option in the command line, I am not very sure how the relative tolerance is defined. <br>
<br></div><div>In my understanding: <br><br></div>At the beginning, r= b-A*x_i, so rtol = ||r|| / ||b|| with 2-norm has a value. with the calculation, rtol gets smaller, when the rtol_new / rtol_original < 1.0e-5, the calculation will stop.<br>
<br></div>Is my understanding correct? <br><br></div>If so, how to decide the rtol at the first iteration? If initial solution values are all zeros, then rtol should be 1.0. In my output file, it's a value related to the matrix and can be at 1.0e-4 scale. Is there any initial guess solution from preconditioner used there? <br>
<br></div>Could you help to clarify this definition? Thanks<span class="HOEnZb"><font color="#888888"><br><br><br></font></span></div><span class="HOEnZb"><font color="#888888">Qiyue Lu<br></font></span></div>
</blockquote></div><br></div>