<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="Content-Type">
</head>
<body text="#000000" bgcolor="#FFFFFF">
<div class="moz-cite-prefix">On 30/10/13 16:48, Matthew Knepley
wrote:<br>
</div>
<blockquote
cite="mid:CAMYG4Gm507y-6XaENFzeAwnSki-Vp7zhaNCxcu=7dMSnODJMeA@mail.gmail.com"
type="cite">
<div dir="ltr">On Wed, Oct 30, 2013 at 8:58 AM, Torquil Macdonald
Sørensen <span dir="ltr"><<a moz-do-not-send="true"
href="mailto:torquil@gmail.com" target="_blank">torquil@gmail.com</a>></span>
wrote:<br>
<div class="gmail_extra">
<div class="gmail_quote">
<blockquote class="gmail_quote" style="margin:0 0 0
.8ex;border-left:1px #ccc solid;padding-left:1ex">
<div dir="ltr">
<div>Thanks Matthew!<br>
<br>
The problem I'm working on is the Dirac equation, in
various number of dimensions. I'm going to take a stab
at multigrid preconditioning.</div>
</div>
</blockquote>
<div><br>
</div>
<div>My limited knowledge of the Dirac Equation tells me
that it is a relativistic wave equation, and thus
hyperbolic, which is quite difficult for</div>
<div>MG (but doable with a bunch of work). How do you have
this formulated?</div>
<div><br>
</div>
</div>
</div>
</div>
</blockquote>
<br>
I'm doing time-stepping at the moment, so I'm solving an elliptic
equation at each time step. No fancy hyperbolic multigrid work :-)<br>
<br>
Best regards<br>
Torquil Sørensen<br>
<br>
</body>
</html>