<div dir="ltr"><br><div class="gmail_extra"><br><div class="gmail_quote">On Tue, Oct 8, 2013 at 12:18 AM, Jed Brown <span dir="ltr"><<a href="mailto:jedbrown@mcs.anl.gov" target="_blank">jedbrown@mcs.anl.gov</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div class="im">Barry Smith <<a href="mailto:bsmith@mcs.anl.gov">bsmith@mcs.anl.gov</a>> writes:<br>
>> - In this type of problem, which TS scheme is recommended ? TSARKIMEX ?<br>
><br>
> Beats me.<br>
<br>
</div>ARKIMEX should give you a decent integrator with adaptive error control.<br>
Use '-ts_arkimex_type 1bee' to use backward Euler with an<br>
extrapolation-based error estimator.<br></blockquote><div><br></div><div>Good to know. I tried TSBEULER but it has constant timestep.</div><div><br></div><div>-Is there any other TS with adaptive timestep ?</div><div><br>
</div><div>-With ARKIMEX, is there a way to control the timestep ? For instance, is it possible to control the max factor between two successive timesteps (dt' = factor*dt), in order to avoid rejections ?</div><div> </div>
</div>- Is it possible to have Cranck-Nicholson with adaptive timestep ? I tried TSCN but it seems timestep is constant.</div><div class="gmail_extra"><br></div><div class="gmail_extra">- I also tried TSROSW. Seems to work quite well in some cases. How does it compare to ARKIMEX ?</div>
<div class="gmail_extra"><br></div><div class="gmail_extra">Christophe</div></div>