<div dir="ltr">On Fri, Aug 2, 2013 at 10:30 PM, Olivier Bonnefon <span dir="ltr"><<a href="mailto:olivier.bonnefon@avignon.inra.fr" target="_blank">olivier.bonnefon@avignon.inra.fr</a>></span> wrote:<br><div class="gmail_extra">
<div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Hello,<br>
<br>
Just a mail to thank you for your help, I successfully simulate linear and non linear system (0=-\Delta u + u, and 0=-\Delta u - u(1-u)). The point was to know that "g0" is the derivative of f0 regarding u, in the PetscFEM struct.<br>
</blockquote><div><br></div><div>Great! Thanks for your patience. Let us know if we can give any more help.</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
Olivier B.<div class="HOEnZb"><div class="h5"><br>
<br>
On 07/31/2013 05:43 PM, Jed Brown wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
Olivier Bonnefon<<a href="mailto:olivier.bonnefon@avignon.inra.fr" target="_blank">olivier.bonnefon@<u></u>avignon.inra.fr</a>> writes:<br>
<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
Hello,<br>
<br>
You are right. I have to define the Jacobian function of the variational<br>
formulation. I'm using snes and the petsFem struc (like in ex12).<br>
<br>
I need some information about the petscFem struct. I didn't find any<br>
document about that, is there one ?<br>
<br>
The field f0Funcs is used for the term \int f_0(u,gradu,x)*v<br>
The field f1Funcs is used for the term \int f_1(u,gradu,x).grad v<br>
<br>
Are f0 and f1 used for the rhs of the linearized problem ?<br>
</blockquote>
We think about these problems as being nonlinear whether they are or<br>
not. For a linear problem, you can apply one iteration of Newton's<br>
method using '-snes_type ksponly'. The Jacobian consists of the<br>
derivatives of f_0 and f_1 with respect to u.<br>
<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
But what about g0,g1,g2 and g3 functions? I guess I have to use it to<br>
define the Jacobian ?<br>
</blockquote>
Those are the derivatives of the f_0 and f_1.<br>
<br>
For example, see the notation in Eq. 3 and 5 of this paper:<br>
<br>
<a href="http://59A2.org/na/Brown-EfficientNonlinearSolversNodalHighOrder3D-2010.pdf" target="_blank">http://59A2.org/na/Brown-<u></u>EfficientNonlinearSolversNodal<u></u>HighOrder3D-2010.pdf</a><br>
</blockquote>
<br>
<br></div></div><div class="HOEnZb"><div class="h5">
-- <br>
Olivier Bonnefon<br>
INRA PACA-Avignon, Unité BioSP<br>
Tel: <a href="tel:%2B33%20%280%294%2032%2072%2021%2058" value="+33432722158" target="_blank">+33 (0)4 32 72 21 58</a><br>
<br>
</div></div></blockquote></div><br><br clear="all"><div><br></div>-- <br>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>
-- Norbert Wiener
</div></div>