<div dir="ltr"><div><div><div>Hello,<br></div> I am trying to implement a split operator method to solve time dependent Schrodinger euqation. I use a semi implicit discretization for the time operator. I have not used petsc TS before, it will be helpful if you can give me some pointers to implementing this algorithm:<br>
<br></div><div>Actual equation: i*hbar*ddt(x) = (H1+H2)*x (linear problem)<br></div><div><br></div><div>A1 = i*hbar/dt * IdentityMat - H1/2<br></div><div>B1 = i*hbar/dt * IdentityMat + H2/2</div><div><br><div>A2 = i*hbar/dt * IdentityMat - H2/2<br>
</div><div>B2 = i*hbar/dt * IdentityMat + H1/2</div><br>x1,x2 are vectors <br>do ic=1,NumTimeSteps<br></div> <br></div><div> solve substep1 : A1*x1 = B1*x2 <br></div><div> solve substep2 : A2*x2 = B2*x1 <br></div>
<div> <br></div><div> copy solution: x(ic*dt) = x2 <br></div><div> <br></div>end do<br clear="all"><div><div><div><div><br></div><div>I have following constraints:<br>1.) I Want the time step to be fixed user specified value<br>
</div><div>2.) Matrices A1 and A2 can be reorder to be tri or penta diagonal. I would like to use this for fast direct solve. Typical matrix sizes 10^5 to 10^6 with 3 to 5 non zeros per row. <br></div><div>3.) based on the time it take for my matlab code, which seem to use umfpack, i think a direct solve will be fast enough for my needs. <br>
</div><div><br><br></div><div>petsc TS has the theta method which seems like the one i should be using but its not clear to me how to do the stepping <br></div><div><br></div><div>Thanks<br>Reddy<br></div><div><br>-- <br>
-----------------------------------------------------<br>Dharmendar Reddy Palle<br>Graduate Student<br>Microelectronics Research center,<br>University of Texas at Austin,<br>10100 Burnet Road, Bldg. 160<br>MER 2.608F, TX 78758-4445<br>
e-mail: <a href="mailto:dharmareddy84@gmail.com" target="_blank">dharmareddy84@gmail.com</a><br>Phone: +1-512-350-9082<br>United States of America.<br>Homepage: <a href="https://webspace.utexas.edu/~dpr342" target="_blank">https://webspace.utexas.edu/~dpr342</a><br>
</div></div></div></div></div>