<div dir="ltr">Hi all,<div><br></div><div style>I'm trying to solve a discretization of the PDE in weak form</div><div style><br></div><div style> rho/tau u - mu \Delta u = f</div><div style><div><br></div><div style>
where u is vector-valued (let's say in 2D -- this comes from a Navier--Stokes problem). Some Dirichlet-boundary conditions come with it, too.</div><div style><br></div><div style>After translation in weak form,<br></div>
<div style><br></div><div style> rho/tau * inner(u, v) + mu * inner(grad(u), grad(v)) = inner(f, v)</div><div style><br></div><div style>I'm solving this with PETSc's CG and hypre_amg. What I get is<br></div><div style>
<br></div><div style><div> 0 KSP preconditioned resid norm 4.962223194957e+30 true resid norm 2.364095175749e-02 ||r(i)||/||b|| 1.000000000000e+00</div><div> 1 KSP preconditioned resid norm 7.089043065444e+19 true resid norm 2.289113027906e-02 ||r(i)||/||b|| 9.682829402926e-01</div>
<div><br></div></div><div style>Without preconditioning, I'm getting</div><div style><br></div><div style><div> 0 KSP preconditioned resid norm 2.364095175749e-02 true resid norm 2.364095175749e-02 ||r(i)||/||b|| 1.000000000000e+00</div>
<div> 1 KSP preconditioned resid norm 4.415430823612e-02 true resid norm 4.415430823612e-02 ||r(i)||/||b|| 1.867704341562e+00</div><div> 2 KSP preconditioned resid norm 1.077641425707e-01 true resid norm 1.077641425707e-01 ||r(i)||/||b|| 4.558367348159e+00</div>
<div><br></div><div style>and DIVERGED_INDEFINITE_MAT.</div><div style><br></div><div style>Does anyone else have experience with this sort of problems? Any obvious mistakes?</div></div><div style><br></div><div style>--Nico</div>
<div style><br></div></div><div style><br></div><div style><br></div></div>