shu guo :<div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<br>
I am a new user of PetSc in fortran. I want to solve a ill conditioned<br>
matrix right now. And the matrix is now assembled as a MPIBAIJ matrix<br>
in a paralleled way. Now I want to use superlu (the serial direct<br>
solver) to solve it since its ill-conditioned characteristic. I tried<br>
MatConvert as<br>
<br>
call MatConvert (Kmatem, MATSEQAIJ, MAT_INITIAL_MATRIX, Kmatemseq)<br>
and it gives me a segmentation error. Can anyone give me some advice?<br></blockquote><div><br></div><div> call MatConvert (Kmatem, MATAIJ, MAT_INITIAL_MATRIX, Kmatemseq)</div><div>or</div><div>call MatConvert (Kmatem, MATMPIAIJ, MAT_INITIAL_MATRIX, Kmatemseq)</div>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<br>
BTW, I am using Petsc 2.3.3-p15 version, which do not have Schur<br>
preconditioner for ill-conditioned matrix. Also hope someone can give<br>
me some advice on how to solve this kind of matrix based on this petsc<br>
version. Thanks a lot!<br></blockquote><div> </div><div>Petsc 2.3.3-p15 is too old. Please update to the latest petsc-3.3 and configure it</div><div>with '--download-metis --download-parmetis --download-superlu --download-superlu_dist'</div>
<div>Then use superlu_dist direct solver.</div><div><br></div><div>Hong</div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<span class="HOEnZb"><font color="#888888"><br>
Shu<br>
</font></span></blockquote></div><br>