On Thu, Aug 2, 2012 at 6:58 AM, tribur <span dir="ltr"><<a href="mailto:burckhardt@itis.ethz.ch" target="_blank">burckhardt@itis.ethz.ch</a>></span> wrote:<br><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
Dear PETsc team,<br>
<br>
We are confrontated with the problem of a complex-valued equation system M * z = (A + i*B) * (x + i*y) = b + i*c which shows slow convergence using GMRES and, e.g., Block Jacobi or SOR as preconditioner.<br>
<br>
To be able to use algebraic multigrid preconditioning, we are trying to solve the equivalent real-valued system (A -B; B A) * (x; y) = (b; c) using PCFIELDSPLIT and, e.g.,<br>
-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full -fieldsplit_real_ksp_type gmres -fieldsplit_real_ksp_max_it 10 -fieldsplit_real_pc_type bjacobi -fieldsplit_real_sub_pc_type lu -fieldsplit_imag_ksp_type fgmres -fieldsplit_imag_ksp_max_it 10 -fieldsplit_imag_pc_type none<br>
<br>
However, PCFIELDSPLIT does'nt work due to the lacking convergence of ksp(A) with the right hand side bTmp given by the current FGMRES iteration (outer loop). kspSolve(kspA, b, x) converges acceptably fast using, e.g., GMRES and Block Jacobi, but kspSolve(kspA, bTmp, xTmp) shows stagnation after about 3 iterations.<br>
</blockquote><div><br></div><div>Always check with LU for all solves first, and then back off. This behavior sounds like you have a singular A.</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
What can we do? Do think a good initial estimate for (x,y) helps?<br>
<br>
Thanks a lot for any hints,<br>
<br>
Kathrin<br>
</blockquote></div><br><br clear="all"><div><br></div>-- <br>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>
-- Norbert Wiener<br>