<div class="gmail_quote">On Sun, Jul 22, 2012 at 10:17 AM, Umut Tabak <span dir="ltr"><<a href="mailto:u.tabak@tudelft.nl" target="_blank">u.tabak@tudelft.nl</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
Helmholtz equation, 3d discretization of a fluid domain, </blockquote><div><br></div><div>Do you mean indefinite Helmholtz (frequency-domain) or time-domain (definite)? Sorry, I have to ask...</div><div><br></div><div>What is the wave number? How many grid points per wavelength?</div>
<div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">basically
    the operator is singular however for my problem I can delete one of
    the rows of the matrix, for this case, I  and get a non-singular
    operator that I can continue my operations, basically, I am getting
    a matrix with size n-1, where original problem size is n.</blockquote><div><br></div><div>This is often bad for iterative solvers. See the User's Manual section on solving singular systems. What is the condition number of the original operator minus the zero eigenvalue (instead of "pinning" on point)?</div>
<div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"> However,
    this application is pretty problem specific, then I can use this
    full-rank matrix in linear solutions. The condition number estimate
    belongs to this full-rank matrix that is extracted from the original
    singular operator...</blockquote></div><br>