If I understand correctly:<br><br>For a system:<br>M^{-1} A x = M^{-1} b<br>we don't need to multiply M^{-1} A explicitly, but we solve M w = v whenever needed.<br><br>So the Krylov method is used in order to solve that system, or equivalently to compute the vector M^{-1} v?<br>
<br><br><br><br><div class="gmail_quote">On 19 June 2012 17:54, Matthew Knepley <span dir="ltr"><<a href="mailto:knepley@gmail.com" target="_blank">knepley@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div class="HOEnZb"><div class="h5">On Tue, Jun 19, 2012 at 10:33 AM, Margarita Satraki <span dir="ltr"><<a href="mailto:margarita.satraki@gmail.com" target="_blank">margarita.satraki@gmail.com</a>></span> wrote:<br>
</div></div><div class="gmail_quote"><div><div class="h5"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
Hello,<br><br>I have difficulty understanding how PCKSP works.<br><br>From:<br><a href="http://www.mcs.anl.gov/petsc/documentation/tutorials/Columbia04/DDandMultigrid.pdf" target="_blank">http://www.mcs.anl.gov/petsc/documentation/tutorials/Columbia04/DDandMultigrid.pdf</a><br>
I understand that instead of using preconditioners, it uses Krylov methods for the ''inner solvers''.<br><br>What are the ''inner solvers''? Is there some kind of a subsystem that is solved instead of applying a preconditioner?<br>
</blockquote><div><br></div></div></div><div>Nope, its jsut like a PC:</div><div><br></div><div> M^{-1} A x = M^{-1} b</div><div><br></div><div>where now M^{-1} instead of being an LU solve, for instance, is a Krylov solve.</div>
<div>
<br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Many thanks,<br><br>Margarita<span class="HOEnZb"><font color="#888888"><br>
</font></span></blockquote></div><span class="HOEnZb"><font color="#888888"><br><br clear="all"><div><br></div>-- <br>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>
-- Norbert Wiener<br>
</font></span></blockquote></div><br>