On Tue, Mar 6, 2012 at 9:10 AM, Kharche, Sanjay <span dir="ltr"><<a href="mailto:Sanjay.Kharche@liverpool.ac.uk">Sanjay.Kharche@liverpool.ac.uk</a>></span> wrote:<br><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div>
<div style="direction:ltr;font-size:10pt;font-family:Tahoma">
<div style="font-size:16px;font-family:Times New Roman">
<div><br>
</div>
<div>Dear All</div>
<div><br>
</div>
<div>Can someone suggest me for how to solve the 3D heat equation implicitly using ADI please.</div>
<div><br>
</div>
<div>In brief, I would like to solve the 3D heat equation with a constant diffusion using finite differences. In 1D, I am using the Thomas algorithm in serial. However, since the 3D problem is large, I need to parallelise it. Any pointers will be appreciated.</div>
</div></div></div></blockquote><div><br></div><div>ADI is from the last century. Use PETSc's Geometric Multigrid. If you look at SNES ex50 and the tutorial runs for it, you can</div><div>see how this works.</div><div>
<br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div><div style="direction:ltr;font-size:10pt;font-family:Tahoma"><div style="font-size:16px;font-family:Times New Roman">
<div>thanks</div><span class="HOEnZb"><font color="#888888">
<div>Sanjay</div>
<div><br>
</div>
</font></span></div>
</div>
</div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>
-- Norbert Wiener<br>