<div dir="ltr"><div class="gmail_quote">On Fri, Feb 3, 2012 at 16:03, Thomas Witkowski <span dir="ltr"><<a href="mailto:thomas.witkowski@tu-dresden.de">thomas.witkowski@tu-dresden.de</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div id=":2u8">The system writes<br>
<br>
L 0 M<br>
M L 0<br>
L M L<br>
<br>
With L = discrete laplace, M = mass matrix, 0 = empty matrix</div></blockquote><div><br></div><div>Hmm, what are the relative scales of these equations?</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div id=":2u8"><div class="im"><br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<br>
AMG is more delicate and generally less robust for systems.<br>
</blockquote></div>
Is this different with geometric multigrid?</div></blockquote></div><br><div>Null space issues are usually easier with geometric, but constructing low energy interpolants can require custom work.</div></div>