On Mon, Nov 7, 2011 at 9:06 AM, behzad baghapour <span dir="ltr"><<a href="mailto:behzad.baghapour@gmail.com">behzad.baghapour@gmail.com</a>></span> wrote:<br><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">
Is there any link with "Incremental Condition Estimation" (ICE) developed by Bischof in LAPACK with Petsc to evaluate Extremal singular values? <br></blockquote><div><br></div><div>We do not use this (it is intended for triangular matrices). It may be tenuously connected. He says he is</div>
<div>approximating the secular equation with rational functions, in some sense we are approximating the</div><div>characteristic equation with polynomials (Krylov).</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">
Thanks,<br>B.B.<br><br><br><br><br><div class="gmail_quote">
On Sun, Oct 30, 2011 at 6:49 PM, Jed Brown <span dir="ltr"><<a href="mailto:jedbrown@mcs.anl.gov" target="_blank">jedbrown@mcs.anl.gov</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div><div class="gmail_quote">On Sun, Oct 30, 2011 at 05:17, Matthew Knepley <span dir="ltr"><<a href="mailto:knepley@gmail.com" target="_blank">knepley@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
We call LAPACK SVD on the Hermitian matrix made by the Krylov method.</blockquote></div><br></div><div>GMRES builds a Hessenberg matrix.</div>
</blockquote></div><br><br>
</blockquote></div><br><br clear="all"><div><br></div>-- <br>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>
-- Norbert Wiener<br>