So, i need to transform the Gauss quadrature points (qp) from the reference 2D triangle to 3D using affine transformation of the form:<br>[x y z]^T = A x [qp_x qp_y] + [c1 c2 c3]^T; A is a 3 x 2 matrix , am i right?<br><br>
thanks<br>Reddy<br><br><div class="gmail_quote">On Sat, Nov 5, 2011 at 3:38 PM, Jed Brown <span dir="ltr"><<a href="mailto:jedbrown@mcs.anl.gov">jedbrown@mcs.anl.gov</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">
<div class="im"><div class="gmail_quote">On Sat, Nov 5, 2011 at 14:34, Dharmendar Reddy <span dir="ltr"><<a href="mailto:dharmareddy84@gmail.com" target="_blank">dharmareddy84@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
I am writing a 3D FEM code for learning purpose (experimenting with object oriented concepts in Fortran 2003). Can some one tell me (pseudo code) how to implement a non homogenous Neumann boundary condition. You can also point me to a book. I am using tetrahedral elements for solving Poisson equation. I am using a 4 point Gauss quadrature, and linear basis functions for cell volume integrals. I am confused on how to do the integration on the facet. </blockquote>
</div><br></div><div>You need to compute an integral over the face. It appears in the weak form. Any book on finite element methods should cover this.</div>
</blockquote></div><br><br clear="all"><br>-- <br>-----------------------------------------------------<br>Dharmendar Reddy Palle<br>Graduate Student<br>Microelectronics Research center,<br>University of Texas at Austin,<br>
10100 Burnet Road, Bldg. 160<br>MER 2.608F, TX 78758-4445<br>e-mail: <a href="mailto:dharmareddy84@gmail.com">dharmareddy84@gmail.com</a><br>Phone: +1-512-350-9082<br>United States of America.<br><br>