It is wonderful to reach a agreement. :-) <br>Cheers,<br><br>Yan<br><br><div class="gmail_quote">On Thu, Apr 7, 2011 at 10:23 AM, Jed Brown <span dir="ltr"><<a href="mailto:jed@59a2.org">jed@59a2.org</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin: 0pt 0pt 0pt 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-left: 1ex;"><div dir="ltr"><div class="gmail_quote"><div class="im">On Thu, Apr 7, 2011 at 16:21, Ryan Yan <span dir="ltr"><<a href="mailto:vyan2000@gmail.com" target="_blank">vyan2000@gmail.com</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin: 0pt 0pt 0pt 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-left: 1ex;">
<div>Wait, so is it for PREONLY? And what Matsolve does, solving a triangular system with both L and U available?<br></div></blockquote><div><br></div></div><div>Yup, forward- and back-solves are both done in one "MatSolve".</div>
<div class="im">
<div> </div><blockquote class="gmail_quote" style="margin: 0pt 0pt 0pt 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-left: 1ex;"><div>The reason that I previously guess the count be two is that I think there is a back-substituiton<br>
and a forward-substitution involved in solving a linear system using factorization. If a pair of <br>
back-substitution and forward-substitution counts 1 MatSolve. Then I think we mean the same thing.</div></blockquote></div></div><br></div>
</blockquote></div><br>