<html><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><br><div><div>On Jul 27, 2010, at 10:47 AM, Barry Smith wrote:</div><br class="Apple-interchange-newline"><blockquote type="cite"><div><br> What happens when you use sundials from PETSc. Use -ts_type sundials? Run also with -log_summary and compare the number of function evaluations, timesteps etc<br><br></div></blockquote><div><br></div><div>I did use sundials from PETSc. I used Sundials directly. I though Petsc may much faster than sundails, so I tried Petsc. </div><div><br></div><div><br></div><div><br></div><br><blockquote type="cite"><div> Without knowing more information about what sundials/cvode is doing there is no way to know why it is much faster. Could be larger time-steps, less function evaluations, etc. <br><br></div></blockquote><div><br></div><br><blockquote type="cite"><div> Barry<br><br>On Jul 27, 2010, at 8:22 AM, Xuan YU wrote:<br><br><blockquote type="cite"><br></blockquote><blockquote type="cite">On Jul 26, 2010, at 9:51 PM, Barry Smith wrote:<br></blockquote><blockquote type="cite"><br></blockquote><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite">1) The function evaluations are taking a lot of time; the problem is not with the Jacobian differencing it is that each function evaluation needed by the differencing is slow<br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote><blockquote type="cite"><br></blockquote><blockquote type="cite">When I use cvode solve the same preoblem, function evaluations takes 41.42% of total time. And the total time consumption is much less than Petsc.( 5.657seconds VS 2 minutes 33.726 seconds)<br></blockquote><blockquote type="cite"><br></blockquote><blockquote type="cite"><br></blockquote><blockquote type="cite"><br></blockquote><blockquote type="cite"><br></blockquote><blockquote type="cite"><blockquote type="cite"> 2) There are a huge number of SNESFunctionEvaluations, much much more then I would expect, like 10 per nonlinear solve.<br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote><blockquote type="cite"><br></blockquote><blockquote type="cite">What is the possible reason for this case?<br></blockquote><blockquote type="cite"><br></blockquote><blockquote type="cite"><br></blockquote><blockquote type="cite"><br></blockquote><blockquote type="cite"><blockquote type="cite"> Barry<br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite">On Jul 26, 2010, at 5:50 PM, Xuan YU wrote:<br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">On Jul 26, 2010, at 3:53 PM, Barry Smith wrote:<br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">./configure an optimized version of PETSc (that is with the ./configure flag of --with-debugging=0) and run with -log_summary to get a summary of where it is spending the time. This will give you a better idea of why it is taking so long.<br></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">Does my log summary means the finite difference Jacobian approximation is not good? Should I write analytic jacobian function(that will be a huge amount of work)?<br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><Picture 3.png><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><Picture 4.png><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><Picture 5.png><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">Barry<br></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">On Jul 26, 2010, at 2:49 PM, Xuan YU wrote:<br></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">Hi,<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">I am using TS solving a nonlinear problem. I created an approximate data structure for Jacobian matrix to be used with matcoloring, my MatFDColoringView is like this:<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><Picture 1.png><br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">But the speed of code is too slow than what I expected. Only 10 time step costs 11seconds!<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">What's wrong with my code? How can I speed up?<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">Thanks!<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">This is the ts_view result.<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">TS Object:<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">type: beuler<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">maximum steps=100<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">maximum time=10<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">total number of nonlinear solver iterations=186<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">total number of linear solver iterations=423<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">SNES Object:<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">type: ls<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> line search variant: SNESLineSearchCubic<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> alpha=0.0001, maxstep=1e+08, minlambda=1e-12<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">maximum iterations=50, maximum function evaluations=10000<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">tolerances: relative=1e-08, absolute=1e-50, solution=1e-08<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">total number of linear solver iterations=1<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">total number of function evaluations=19<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">KSP Object:<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> type: gmres<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> GMRES: happy breakdown tolerance 1e-30<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> maximum iterations=10000, initial guess is zero<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> tolerances: relative=1e-05, absolute=1e-50, divergence=10000<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> left preconditioning<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> using PRECONDITIONED norm type for convergence test<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">PC Object:<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> type: ilu<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> ILU: out-of-place factorization<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> 0 levels of fill<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> tolerance for zero pivot 1e-12<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> using diagonal shift to prevent zero pivot<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> matrix ordering: natural<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> factor fill ratio given 1, needed 1<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> Factored matrix follows:<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> Matrix Object:<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> type=seqaij, rows=1838, cols=1838<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> package used to perform factorization: petsc<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> total: nonzeros=8464, allocated nonzeros=8464<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> total number of mallocs used during MatSetValues calls =0<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> not using I-node routines<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> linear system matrix = precond matrix:<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> Matrix Object:<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> type=seqaij, rows=1838, cols=1838<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> total: nonzeros=8464, allocated nonzeros=9745<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> total number of mallocs used during MatSetValues calls =37<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"> not using I-node routines<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">Xuan YU<br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><a href="mailto:xxy113@psu.edu">xxy113@psu.edu</a><br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite">Xuan YU<br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><a href="mailto:xxy113@psu.edu">xxy113@psu.edu</a><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><br></blockquote></blockquote><blockquote type="cite"><br></blockquote><br><br></div></blockquote></div><br><div apple-content-edited="true"> <span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: Helvetica; font-size: medium; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; "><div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: Helvetica; font-size: medium; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; "><div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><div>Xuan YU (<span class="Apple-style-span" style="font-family: arial; font-size: 16px; white-space: pre; ">俞烜<span class="Apple-style-span" style="font-family: Helvetica; font-size: medium; white-space: normal; ">)</span></span></div><div><a href="mailto:xxy113@psu.edu">xxy113@psu.edu</a></div><div><br></div></div></span><br class="Apple-interchange-newline"></div></span><br class="Apple-interchange-newline"> </div><br></body></html>