Sorry for that. Actually, the simple linear elliptic (second order) PDE is adopted in my codes. And, my results tell me that the MG method is more preferred than CG-like solvers.<br><br><div><span class="gmail_quote">On 10/8/07,
<b class="gmail_sendername">Lisandro Dalcin</b> <<a href="mailto:dalcinl@gmail.com">dalcinl@gmail.com</a>> wrote:</span><blockquote class="gmail_quote" style="border-left: 1px solid rgb(204, 204, 204); margin: 0pt 0pt 0pt 0.8ex; padding-left: 1ex;">
You forgot to mention what kind of problem your PDE is, appart from<br>being linear. I mean, can you describe which kind of problem are you<br>trying to solve?<br><br>On 10/7/07, Yujie <<a href="mailto:recrusader@gmail.com">
recrusader@gmail.com</a>> wrote:<br>> Hi, everyone<br>><br>> I am using adaptive mesh refinement to solve a group of coupled steady-state<br>> linear PDEs. I will use PETSC as the solver. Did anyone have experience
<br>> in such problem. I want to know which<br>> solving method is more efficient, including<br>> iterative method and preconditioner.<br>> Thanks a lot.<br>><br>> Regards,<br>> Yujie<br>><br><br><br>
--<br>Lisandro Dalcín<br>---------------<br>Centro Internacional de Métodos Computacionales en Ingeniería (CIMEC)<br>Instituto de Desarrollo Tecnológico para la Industria Química (INTEC)<br>Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
<br>PTLC - Güemes 3450, (3000) Santa Fe, Argentina<br>Tel/Fax: +54-(0)342-451.1594<br><br></blockquote></div><br><br clear="all"><br>-- <br>Zhengyong Ren<br>School of Info-physics and Geomatics Engineering<br>DiXue Building, 3-322#,
<br>Central South University, Hunan Province,China.<br>Postal code: 410083<br>Email: <a href="mailto:renzhengyong@gmail.com">renzhengyong@gmail.com</a><br>Tel: +086013787102372.