
Hierarchical multigrid approaches
for the finite cell method on uniform

and multi-level hp-refined grids

J. Jomo∗1, O. Oztoprak1, F. de Prenter2,
N. Zander1, S. Kollmannsberger1, and E. Rank1

1Chair of Computational Modeling and Simulation, Technische Universität München
2Research Develpoment Netherlands, Hengelo, Netherlands

Abstract

This contribution presents a hierarchical multigrid approach for the solution of large-scale finite cell
problems on both uniform grids and multi-level hp-discretizations. The proposed scheme leverages
the hierarchical nature of the basis functions utilized in the finite cell method and the multi-level
hp-method, which is attributed to the use of high-order integrated Legendre basis functions and
overlay meshes, to yield a simple and elegant multigrid scheme. This simplicity is reflected in the
fact that all restriction and prolongation operators reduce to binary matrices that do not need to
be explicitly constructed. The coarse spaces are constructed over the different polynomial orders
and refinement levels of the immersed discretization. Elementwise and patchwise additive Schwarz
smoothing techniques are used to mitigate the influence of the cut cells leading to convergence rates
that are independent of the cut configuration, mesh size and in certain scenarios even the polynomial
order. The multigrid approach is applied to second-order problems arising from the Poisson equation
and linear elasticity. A series of numerical examples demonstrate the applicability of the scheme for
solving large immersed systems with multiple millions and even billions of unknowns on massively
parallel machines.

Keywords: immersed methods, finite cell method, multigrid, iterative solvers, hp-refinement, parallel
computing

1 Introduction

Immersed finite element methods allow numerical simulations to be easily performed on domains with
a complex shape by employing a discretization that does not need to capture the boundaries of the
body under analysis. The suitability of these methods to handle a variety of geometrical input-data,
such as CAD files, scan images, implicitly-defined geometries and oriented point clouds, has led to
the emergence of several immersed schemes. Noteworthy immersed methods include the finite cell
method (FCM) [1, 2], cutFEM [3, 4], the aggregated unfitted method (AgFEM) [5], the Cartesian
grid finite element method [6, 7] and the shifted boundary method [8, 9].

The widespread use of immersed methods for solving problems of engineering relevance was for
a long time inhibited by the conditioning problems associated with cut elements, i.e. elements that
are intersected by the boundary of the original body. In [10] the underlying cause of ill-conditioning

∗Corresponding author: john.jomo@tum.de

Preprint submitted to Computer Methods in Applied Mechanics and Engineering

ar
X

iv
:2

01
0.

00
88

1v
1 

 [
m

at
h.

N
A

] 
 2

 O
ct

 2
02

0



in immersed methods is systematically analyzed for uniform grids and shown to be the occurrence
of basis functions that are not only small but also almost linear dependent. Over the past few
years, different approaches have been devised to address the conditioning problems of immersed
methods such as different preconditioning strategies e.g. [11–13] and methods based on basis function
manipulation, removal or aggregation, e.g. [5, 14–16]. These techniques enable iterative solvers to
be applied to immersed systems and have opened the door for large-scale immersed finite element
analysis.

One possibility of further improving the convergence properties of (immersed) linear systems and
the efficiency of the solution process itself is by the use of multigrid solution techniques. The central
idea behind multigrid techniques is to accelerate the convergence of a fine problem by incorporat-
ing correction terms generated from a hierarchy of coarser problems. These terms approximate the
smooth components of the error, hereby leading to fast convergence of smooth modes that generally
converge slowly when standard iterative solvers such as the Conjugate Gradient (CG) method are
used. The high-frequency errors are commonly treated in a smoothing process within the multi-
grid algorithm. There is a vast amount of literature on multigrid methods. Classical works with a
more theoretical perspective include [17, 18], while [19–21] provide a more implementation-oriented
introduction into the subject. Multigrid techniques are generally classified as either geometric or
algebraic methods. Geometric multigrid methods generate coarse problems using geometrical infor-
mation. In finite element analysis, this translates to the generation of coarse problems based on a
sequence of discretizations with varying element sizes (h-multigrid), polynomial orders (p-multigrid)
or both (hp-multigrid). Algebraic multigrid methods generate their coarse problems solely from the
fine system and are usually applied in scenarios where geometrical information is not available or
cannot be easily obtained [22].

Multigrid methods have been successfully applied to boundary-conforming finite element methods
based on the p-version of the finite element method e.g. [23, 24] and isogeometric analysis e.g. [25–
27], yielding convergence rates that are independent of the grid-size h. Convergence rates that are
independent of the polynomial order p are, however, harder to achieve and are dependent on the
type of smoother employed, as well as the problem type. In most cases, standard smoothers such
as the Jacobi or Gauss-Seidel methods result in convergence rates that deteriorate with increasing
values of p, as shown in [26]. In [27], it is shown that using an ILUT smoother in an isogeometric
p-multigrid framework results in p-independent convergence rates for the problem classes considered
therein. Likewise, smoothers based on the multiplicative Schwarz algorithm have been shown to yield
convergence rates independent of p for two-dimensional problems in isogeometric analysis [28]. The
use of different smoothers in the context of high-order isogeometric analysis is discussed in [29–31].

Approaches based on multigrid cycles have also been utilized to solve linear systems derived from
immersed finite element methods. An algebraic multigrid solver is utilized in [32] to solve large prob-
lems with up to 300 million unknowns using AgFEM on meshes consisting of linear finite elements. It
is also used in [33, 34] to solve systems with up to 480 million unknowns involving local h-refinements
using an adaptive h-AgFEM framework. Reference [35] employs an algebraic multigrid method for
the solution of cutFEM discretizations of the electroencephalography (EEG) forward problem. In
[36] an h-multigrid approach that employs a multiplicative Schwarz smoother is presented and con-
vergence rates independent of the cut configuration and the element size are reported for Lagrange
and B-spline bases in problems with up to 10 million unknowns. Reference [37] employs a geometric
multigrid approach to solve finite cell systems arising from the Poisson equation on a square domain.
This paper shows promising developments for the solution of large FCM systems but only reports
results of two-dimensional problems with linear elements on which local h-refinement is performed.

As previously mentioned, it is possible to construct the nested spaces of the multigrid algorithm
in high-order and hp-adaptive finite element methods based on the values of the polynomial order
p and the different refinement levels of the mesh. In a p-multigrid, the nested subspace of a certain
polynomial order is simply spanned by the basis functions up to and including this order. p-multigrid

2



methods were first developed in the context of the p-version of the finite element method [23] and
the spectral element method [38]. Since then p-multigrid approaches have been extensively studied,
see e.g. [23, 24, 39–41] and applied to different problem classes. Most of these methods define the
multigrid spaces by using an arithmetic sequence where the polynomial order is successively lowered
until p = 1, see [42]. It is, however, also possible to define the V-cycles by using a geometrical
sequence of p, as suggested in [24], by choosing either only odd or only even polynomial orders.
hp-multigrid methods can be applied on both uniform and refined grids, and generally define the
hierarchy of coarse spaces by first performing a p-coarsening of the mesh until the p = 1 level before
applying an h-coarsening. In the case of uniform meshes, h-coarsening is usually applied using a
standard h-multigrid approach, with the coarsest multigrid level comprising a few large elements e.g.
[43]. Hierarchical hp-multigrid approaches are commonly applied on refined grids and often replace
the standard h-refined linear nodal basis with a hierarchical basis, see e.g. [42, 44]. Mitchel et al.
apply a hierarchical hp-approach to refined triangular meshes in [42] and show that the computational
complexity of a single V-cycle is O(M/p), where M is the number of nonzero entries in the stiffness
matrix.

The main objective of this contribution is to present a hierarchical multigrid method for the
solution of linear systems arising from the finite cell method on both uniform grids and multi-
level hp-discretizations. The proposed scheme takes advantage of the hierarchical nature of the
basis functions in the finite cell method [1, 2] and the multi-level hp-scheme [45, 46]. The FCM
implementation used in this work, is based on the p-version of the finite element method (p-FEM)
[47] and utilizes high-order integrated Legendre shape functions that are hierarchical in nature, i.e.
the set of basis functions of order p contains all basis functions from order 1 up to p. Likewise,
the superposition principle used to perform spatial refinement in the multi-level hp-method results
in a hierarchical basis. The suggested multigrid scheme is therefore elegant and efficient, simple in
implementation and not strongly interwoven with the code, since all restriction and prolongation
operators reduce to binary matrices which do not need to be explicitly constructed. Furthermore,
our scheme makes use of additive Schwarz smoothing, and builds upon the work done on additive
Schwarz preconditioning for uniform and multi-level hp-refined finite cell systems in [13]. The overall
algorithm results in convergence rates that are independent of the mesh resolution, refinement level
and, under certain conditions, the polynomial order. The multigrid technique put forward in this
contribution is used to solve large finite cell systems with up to 3.2 billion degrees of freedom (DOFs)
and shown to be suitable for large-scale finite cell analyses on massively parallel machines.

The paper at hand is organized into five sections. The core features of the finite cell method and
multi-level hp-refinement are highlighted in Section 2. Section 3 presents a hierarchical multigrid
framework for FCM and the multi-level hp-method focusing on the construction of the coarse spaces
and the choice of smoothers to guarantee robustness in the immersed setting. A series of numerical
examples are handled in Section 4. These examples are comprised of simple benchmark test cases
as well as large-scale applications that attest the suitability of the proposed solution scheme for
large-scale finite cell analyses. Section 5 concludes the paper, providing a summary and an outlook.

2 The finite cell method and multi-level hp-refinement

The following section presents the fundamental ideas behind the finite cell method and the multi-level
hp-method. These discretization techniques are used in tandem to perform numerical simulations on
domains with complex geometries. Noteworthy application areas include the analysis of bone-implant
systems [48], the simulation of metal additive manufacturing processes [49] and the modeling of crack
growth in brittle structures by means of a phase-field approach [50].

3



Ωphys

(a) Domain of computation.

Ωfict

Ωphys
α = 1

α� 1

α� 1

α� 1

(b) Fictitious domain extension.

Ωfict

Ωphys

α = 1

α� 1

α� 1

α� 1

(c) Structured hp-refined FCM mesh.

Figure 1: Illustration of the main idea behind the finite cell method.

2.1 Ingredients of the finite cell method

The finite cell method (FCM) is an immersed finite element method that combines a fictitious domain
approach with high-order finite elements making it suitable for performing FE-analysis on bodies with
very complex geometries. Consider a body defined by the physical domain Ωphys and boundary Γ with
Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. ΓD represents the part of the boundary where Dirichlet boundary
conditions gD are applied while ΓN represents the Neumann boundary with applied traction gN . The
main idea of the finite cell method is to place Ωphys in an immersing (fictitious) domain Ωfict yielding
an overall computational domain Ω of simple shape that can be easily discretized by regular finite
elements as illustrated in Figure 1. An indicator function α is commonly used to distinguish between
points lying within Ωphys, which are associated with the value α = 1, and points lying in Ωfict, where
alpha is chosen as a small constant α = ε with ε� 1. This indicator function is applied to the weak
form in the FCM as shown in Equation 1 and can be interpreted as a penalization of the fictitious
domain that results in an asymptotically consistent method recovering the original weak form when
α→ 0.

a(uh,vh) =

∫
(Bvh)Tα(x)CBuh dΩ +

∫
β (Nvh)TNuh dΓD

b(vh) =

∫
α(x)(Nvh)T f dΩ +

∫
(Nvh)T gN dΓN +

∫
β (Nvh)T gD dΓD (1)

Equation (1) shows the discretized weak form of a finite cell problem in the case of linear elasticity
with a symmetric bilinear form a(uh,vh) and linear functional b(vh). The term B denotes the linear
strain operator, N the shape function vector, C the elasticity tensor and f a prescribed volumetric
force. The unknown displacement field vector and test functions are represented by uh and vh,
respectively. The penalty method [51] is used in (1) to impose the Dirichlet boundary conditions and
β denotes the penalty parameter.

Various kinds of embedding meshes can be employed in the finite cell method. We use a mesh
based on p-FEM that utilizes integrated Legendre polynomials. The hierarchical nature of these basis
functions can be exploited to construct a multigrid algorithm as outlined in Section 3.

The fictitious domain approach employed in the finite cell method has two main benefits. First, it
significantly simplifies the meshing process, as the generation of (high-order) body-fitting meshes can
be especially challenging for complex geometries in three dimensions. Secondly, it yields a versatile
discretizational framework that can be applied in a straightforward manner to different types of

4



Active node

Inactive node due to
linear independence

Inactive node due
to compatibility

Active edge

Inactive edge due to
linear independence

Inactive edge due to
compatibility

Active face

Inactive face due to
linear independence

Inactive face due to
compatibility

k = 0

k = 1

k = 2

(a) One-dimensional case (b) Two-dimensional case (c) Three-dimensional case

Figure 2: Illustration of the multi-level hp-refinement scheme with two refinement levels, k = 2, in
different spatial dimensions. The deactivation of specific topological components following
a simple rule-set ensures compatibility and linear independence of the basis functions [46].

geometric models such as those stemming from CAD systems, constructive solid geometry, scan
images and even oriented point clouds. The fictitious extension, however, has several implications
that make the simulation pipeline in FCM, and immersed methods in general, differ from that of
conventional body-fitted methods. Three core aspects that require special treatment in immersed
methods include i) the numerical integration on cut elements, ii) the application of Dirichlet boundary
conditions and iii) the conditioning of the system. A comprehensive description of each of these areas
is beyond the scope of this article, as it focuses only on the conditioning and solution of the resulting
linear systems. The interested reader is directed to the review articles on the finite cell method
[52, 53] for a comprehensive overview of cut cell integration techniques and the weak imposition of
Dirichlet boundary conditions.

2.2 The multi-level hp-method

The multi-level hp-method presented in [45, 46] is a novel hp-method that performs spatial refine-
ment based on superposition. The scheme was developed to circumvent the challenges associated
with constraining arbitrary levels of hanging nodes, while at the same time preserving the desirable
characteristics of classical hp-formulations. It employs high-order overlay meshes which are placed
over coarse elements in critical areas of the mesh. The original formulation of the hp-scheme is
based on the p-version of the finite element method and makes use of the direct association of the
topological components — nodes, edges, faces and solids — with the degrees of freedom to ensure
the compatibility and linear independence of the basis functions. The routines used to construct the
basis are intuitive and make the method suitable for dealing with complex refinement scenarios in
multiple dimensions. This contribution only considers refinement patterns that are driven by a priori
geometrical information. The use of error estimators to guide refinement in the scheme is treated in
[54]. A recent publication presents a novel hp-adaptive strategy for multi-level discretiztations [55].
Figure 2 illustrates the manner in which topological components can be activated and deactivated in

5



order to construct the multi-level hp-basis.
A multi-level hp-mesh comprises elements with different refinement levels as shown in Figure 2. The

letter k is used to denote the refinement level/depth of an element. Elements on the lowest refinement
level with k = 0 are termed base elements. Spatial refinement is performed by superposing a base
element with subelements formed by uniform bisections. This procedure is performed recursively until
the desired refinement depth, resulting in a refinement tree for every refined base element. The term
leaf elements is used to refer to the set of all elements in the mesh that do not have subelements.
An in-depth description of the properties of the multi-level hp-basis and the steps needed for its
construction can be found in [46, 56].

3 Hierarchical multigrid for uniform and multi-level hp-grids

The following sections handle the use of multigrid algorithms for the solution of finite cell systems
on uniform meshes and multi-level hp-refined grids. It begins with a brief summary of the multigrid
method, introducing the notation and terminology that is employed in this contribution. It thereafter
expounds on how an hp-multigrid method can be devised for finite cell systems involving multi-level
hp-refinement and elaborates on suitable smoothing techniques for achieving convergence rates that
are independent of the cut configuration, mesh size and in special cases, even the polynomial order.

3.1 The multigrid algorithm

Multigrid methods aim at improving the convergence of a linear system by incorporating informa-
tion obtained from a hierarchy of coarse discretizations. Consider a sequence of function spaces
V0,V1 . . .V`−1,V`, where the index ` denotes the level-number and ` ∈ [0, `max]. V`max denotes the
finest space which contains the solution of the original problem, whereas V0 denotes the coarsest
space. Each multigrid level is associated with a system of linear equations

A`x` = b`. (2)

In this work, only sequences of nested spaces are considered, with the consequence that basis functions
in a coarse space can be expressed as a linear combination of basis functions from a finer space. This
makes it possible to define restriction operators R` that map basis functions from the fine space
of level ` into the next coarse space of level ` − 1. Conversely, the prolongation operators RT

` can
be introduced that map a vector in the coarse space ` − 1 to a vector in the fine space ` which
corresponds to the same function. These operators allow quantities such as vectors and matrices to
be transferred from one level to another e.g. A`−1 = R`A`R

T
` and r`−1 = R`r`, where r` and r`−1

are the residuals on level ` and `− 1, respectively.
The two main steps in a multigrid iteration are a smoothing process and the coarse-grid correction.

These steps are considered complementary since they act on different components of the error. The
error in each multigrid level can be expressed as the difference between the exact solution x` and the
current approximation x̃`, i.e.

e` = x` − x̃` (3)

The smoothing process, or smoothing in short, efficiently reduces the oscillatory components of the
error that are associated with large eigenvalues in level `. Smoothing is performed by the repeated
application of linear iterative methods such as fixed-point iterations. Standard smoothers include
the weighted Jacobi method and the Gauss-Seidel method, but it is also possible to use fixed-point
smoothing based on additive Schwarz (AS) techniques, multiplicative Schwarz techniques and incom-
plete LU factorizations. In this work, the smoothing process is based on additive Schwarz techniques
since they can be readily applied in massively parallel settings and their construction can be done in

6



a fully parallel manner without the need for synchronization. This is in contrast to techniques such
as Gauss-Seidel and multiplicative Schwarz, which often require coordinated application in parallel
settings such as multicoloring algorithms, see e.g. [57]. The application of the smoother is carried
out per the formula

x̃` = x̃` + ωM−1
` r`, (4)

where ω denotes the relaxation parameter and M−1 the smoother. The choice of the relaxation
parameter ω for the various FCM meshes applied in this manuscript is elaborated in Section 3.3.
The coarse-grid correction accelerates the convergence of the smooth components of the error that
are associated with small eigenvalues in level `. By taking advantage of the relation between the
residual r` and the error e`

A`e` = r` (5)

it is possible to approximate the smooth components of the error e` using a coarser discretization
(grid), where e` ≈ RT

` e`−1, by solving the coarse-grid system

A`−1e`−1 = r`−1. (6)

The righthand side vector of this coarse system is formed by restricting the residual at level ` to
level ` − 1, i.e. r`−1 = R`r`. Once this system has been solved, its solution, termed the coarse-grid
correction, can be transferred to level ` through the expression

x̃` = x̃` + RT
` e`−1. (7)

A single multigrid iteration or cycle consists of the application of the smoothing and coarse-grid
correction steps on the different multigrid levels. An exception is, however, made on the coarsest
level ` = 0. Here, the coarse system is solved with either a direct solver, if the system is small in
size, or with an iterative solver before prolongating its solution to level ` = 1. There are different
ways of traversing the levels within a multigrid cycle, the most prevalent of which are the V-cycle,
W-cycle and the full multigrid cycle (FMG). A schematic representation of each of these cycles is
given in Figure 3. V-cycles are applied in this work and a summary of the multigrid algorithm for
this iteration type is given in Algorithm 1.

` = 3

` = 2

` = 1

` = 0

(a) V-cycle. (b) W-cycle. (c) FMG-cycle.

Figure 3: Illustration of three different types of multigrid iterations. The circular dots represent
ns smoothing steps performed on every level with ` 6= 0, while the square dots represent
an “exact” solve performed on ` = 0. Downwards pointing arrows represent restriction
operations, while upwards pointing arrows represent prolongations.

7



Algorithm 1: x̃` = performVcycle(x̃`, r`, `)

1 if l 6= 0 then
2 # perform ns pre-smoothing steps
3 for i ∈ ns do
4 x̃` ← x̃` + ωM−1

` r`
5 end

6 # update residual
7 r` = b` −A`x̃`

8 # coarse grid correction
9 r`−1 = R`r`

10 x̃`−1 = performVcycle(0, r`−1, `− 1)
11 x̃` = x̃` + RT

` x̃`−1

12 r` = b` −A`x̃`

13 # perform ns post-smoothing steps
14 for i ∈ ns do
15 x̃` ← x̃` + ωM−1

` r`
16 end

17 else
18 # solve the coarse system
19 x̃` = solve(A`, r`)

20 end

3.2 Multigrid for hierarchical bases

It is possible to take advantage of the hierarchical nature of the shape functions in the finite cell
method and multi-level hp-refinement to devise a hierarchical multigrid method. Let N` denote the
basis functions that belong to the multigrid level `. For each level in a p-multigrid (for uniform
meshes) or hp-multigrid (for multi-level hp-meshes) the following relation holds

N0 ⊂ N1 . . .N`−1 ⊂ N`. (8)

The hierarchical structure in (8) is also reflected in the degree of freedom vector u. The vector of
DOFs on level `, denoted by u`, is made up of coefficients from level `− 1, represented by u`−1 and
entries solely on level `, denoted by w`, i.e.

u` =

[
u`−1

w`

]
. (9)

From (8) it follows that the basis functions spanning the (coarse) nested subspace can not only be
constructed by a linear combination of basis functions in the fine space, which is done in restriction
and prolongation, but are explicitly contained in the basis functions of the fine space. This leads to
an elegant and efficient multigrid framework since all restriction and prolongation operators reduce
to binary matrices which do not need to be explicitly applied. Transitioning from one multigrid level
to another is done easily by either leaving out specific basis functions or re-introducing them back
into the system. Equation (10) illustrates how the DOFs on level ` can be “trimmed” to obtain the
DOFs on level `− 1. I represents an identity matrix while the term 0 denotes a matrix in which all

8



entries are zero.

u`−1 = [I, 0]

[
u`−1

w`

]
. (10)

For uniform grids with high-order elements, an arithmetic p-sequence is used to generate the coarse
subspaces, i.e. the value of p is progressively reduced until p = 1, see [42]. In the case of multi-level
hp-grids, it is required to first reduce the polynomial order p in the overlay meshes, before reducing
the levels of refinement. This procedure ensures that the resulting coarse spaces are subspaces.

The hierarchical nature of the FE-basis in FCM and the multi-level hp-scheme is also reflected
in the system matrices. Consequently, computation of lower-level matrices is not needed as this
information is readily available. Equation (11) shows the structure of a hierarchical matrix of level
`, which consists of entries Ã` belonging to basis functions contained solely in the highest level, a
term Ã`−1 that contains entries of all lower levels up to `− 1 and a term Ã`,`−1 that couples DOFs
on level ` with all other DOFs.

A` =

[
Ã` Ã`,`−1

ÃT
`,`−1 A`−1

]
(11)

No distinction will be made from this point on in the manuscript between the p-multigrid scheme
for uniform meshes and the hp-multigrid approach of the multi-level hp-discretizations, since the
p-multigrid can be regarded as a special case of the hp-multigrid in which k = 0. Figure 4 shows
the hp-multigrid levels used for a one-dimensional multi-level hp-mesh. A reduction in the p-level is
performed first, followed by a reduction in the levels of refinement until the lowest multigrid level
with p = 1 and k = 0 is reached.

(a) ` = 4 with p = 3 and k = 2 (b) ` = 3 with p = 2 and k = 2 (c) ` = 2 with p = 1 and k = 2

(d) ` = 1 with p = 1 and k = 1 (e) ` = 0 with p = 1 and k = 0

Figure 4: Multigrid levels in a one-dimensional mesh with two levels of multi-level hp-refinement
(k = 2) and a polynomial order of p = 3.

Remark 1 The p = 1 and k = 0 level is chosen as the coarsest level in the proposed hp-multigrid
approach. This allows a simple yet elegant parallel implementation, since only the DOFs on the finest
problem need to be distributed over the MPI tasks. All coarse sub-problems in the multigrid hierarchy
are able to reuse the parallel data structures that have already been set up for the fine problem and do

9



not require any additional steps such as redistribution or partitioning of the DOFs. It should be noted,
however, that the p = 1, k = 0 problem can be coarsened further using a standard geometric multigrid
algorithm. This procedure can improve the convergence of the coarse problem and is beneficial in
applications where the solution of the coarse problem is slow.

3.3 Selection of suitable smoothing strategies

The choice of an appropriate smoother in a multigrid algorithm is fundamental in achieving conver-
gence rates that are independent of the mesh parameter h. In specific problems, it is even possible
to achieve convergence rates that are independent of the element polynomial order p when a suitable
smoother is chosen, see Section 4.1.1.

3.3.1 Additive Schwarz smoothing

Smoothing techniques such as the Jacobi and Gauss-Seidel methods are commonly used in multigrid
algorithms for boundary-conforming finite element methods. These techniques are, however, not
suitable for FCM problems as they fail to resolve the conditioning problems associated with cut
cells. To illustrate this point, we consider a system arising from the Poisson equation posed on a
square domain and compare two scenarios; a case in which the domain is discretized in a boundary-
conforming manner and a scenario where an immersed grid is utilized. Figure 5 visualizes the
eigenmodes associated with the smallest eigenvalue (further denoted as “smallest eigenmode”) of
the system matrix when Jacobi preconditioning is applied. In the boundary-conforming case, the
smallest eigenmode corresponds to a smooth mode that spans the entire domain as shown in Figure
5a. This mode can be sufficiently approximated on a coarse space. In the immersed case, the smallest
eigenmode is restricted to a few cut elements, see Figure 5b. The occurrence of such small modes in
immersed methods impedes the convergence of iterative solvers and makes conventional smoothers
such as the Jacobi and Gauss-Seidel methods unsuitable for immersed grids.

(a) Smallest eigenmode of a boundary-conforming
system with Jacobi preconditioning.

(b) Smallest eigenmode of an immersed system with Ja-
cobi preconditioning.

Figure 5: Illustration of the smallest eigenmodes of a Jacobi preconditioned system arising from the
Poisson equation on a boundary-conforming grid and an immersed grid.

10



Reference [36] shows that smoothers based on the additive and multiplicative Schwarz lemmas
are better suited for multigrid methods involving cut cells and presents results of multiplicative
Schwarz smoothing in different linear elastic examples. As mentioned in the previous section, an
additive Schwarz approach is used in this work, since it can be easily applied in parallel and has
been successfully used for preconditioning FCM systems involving multi-level hp-refinement, see [13].
The core idea behind additive Schwarz smoothing is to group the basis functions in a mesh into
blocks/groups and thereafter construct a smoother by inverting and summing sub-matrices of A
devised from the chosen blocks as per the expression

M−1 =

nblocks∑
i=1

Pi

(
PT
i APi

)−1︸ ︷︷ ︸
A−1

i

PT
i , (12)

where nblocks denotes the number of blocks, i the index corresponding to the ith block containing
m basis functions such that Ai ∈ Rm×m. P and PT are restriction and prolongation operators and
Pi ∈ RnDOFs×m.

The proper selection of the basis function blocks is essential for guaranteeing a robust smoother
that can deal with conditioning problems due to cut elements. Following [12, 13] we select the additive
Schwarz blocks in such a way that basis functions that can become potentially linear dependent are
grouped together. An elementwise approach is used for block selection in uniform grids, i.e. all basis
functions that are supported on an element are considered to be one group, see Figure 6a. A patchwise
approach is employed for multi-level hp-grids, which forms additive Schwarz blocks comprising all
basis functions supported on a group of base elements around a mesh node as indicated in Figure
6b. It should be noted that these two approaches result in overlapping additive Schwarz blocks.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) Elementwise blocks

1 2 3

4 5 6

7 8 9

(b) Patchwise blocks

Figure 6: Selection of the additive Schwarz groups for finite cell problems on uniform grids and multi-
level hp-refined grids. This selection is performed on the granularity of the base elements
for uniform grids and node-based element patches for multi-level hp-grids. The numbers
in the figures indicate the number of additive Schwarz blocks and the support of the 6th

block is shaded

We again illustrate the suitability of the proposed smoothers by considering the smallest eigen-
modes of a Poisson problem on a square domain that is rotated with respect to a fixed background
grid. Figure 7 visualizes the smallest eigenmodes of the systems that are preconditioned using the
elementwise and patchwise additive Schwarz techniques on uniform grids and multi-level hp-refined
grids, respectively. Both approaches are able to adequately deal with small modes due to cut cells

11



(a) Smallest eigenmode of an immersed system
on a uniform grid with elementwise additive
Schwarz preconditioning.

(b) Smallest eigenmode of an immersed system
on a multi-level hp-grid with patchwise ad-
ditive Schwarz preconditioning.

Figure 7: Illustration of the smallest eigenmodes of a system arising from the Poisson equation on
a uniform grid, Figure 7a, and a multi-level hp-grid, Figure 7b. The system matrices are
preconditioned using the additive Schwarz techniques.

3.3.2 The relaxation parameter ω

Although the additive Schwarz smoother can be easily applied in a massively parallel setting, it
requires sufficient stabilization in order to converge. It is well known that the convergence of fixed-
point iterations requires the eigenvalues of the iteration matrix to be bounded, i.e.

ρ(I− ωM−1A) < 1. (13)

In [36], it is shown that the largest eigenvalue of the matrix M−1A is bounded from above by
the maximum overlap nmax of the additive Schwarz blocks i.e. λmax(M−1A) ≤ nmax. Since the
value of nmax is 2d for Cartesian grids, the relaxation parameter ω can be chosen as ω = 2/nmax,
thus guaranteeing stability of the fixed-point iteration. Note, however, that the relation between
the largest eigenvalue and nmax is an inequality and that it is possible to choose values for ω that
are higher than 2/nmax. For the integrated Legendre basis functions considered in this work, the
best performance was achieved by choosing ω = 1/3 for two-dimensional problems and ω = 2/15
for three-dimensional problems, when using an additive Schwarz smoother based on elementwise
blocks. When the additive Schwarz blocks are chosen in a patchwise manner, nmax is larger, and
the best convergence rates are achieved using ω = 1/6 and ω = 1/18 in two and three dimensions
respectively. The values of ω suggested in this work were determined in a heuristic approach and
achieve the mesh-independent convergence rates for different geometries as shown in Section 4.

It should be noted that different smoothing strategies can be applied on the different multigrid
levels, e.g. additive Schwarz on the finest level and Gauss-Seidel or Jacobi smoothing on lower levels.
This is, however, not investigated in this work and additive Schwarz smoothing is applied on all levels
with ` 6= 0.

12



3.3.3 Implementational aspects

The multigrid scheme proposed in this paper is implemented in an in-house finite element code
written in C++. The code’s modular design enables it to be used on a variety of computing platforms
ranging from desktop computers to massively parallel systems. It supports hybrid parallel simulations
through the use of MPI [58] and OpenMP[59]. Generation of the computational mesh in large-scale
computations is carried out in a distributed manner using a parallel adaptive Cartesian grid. This
strategy ensures that the memory resources are utilized in a scalable manner, since no single MPI
task needs to know the complete extent of the computational domain. The code framework utilizes
the functionality of the Epetra package in Trilinos [60] for the parallel construction and storage of
the system matrices. Epetra is also used to perform parallel linear algebra operations. The system
matrices of the different multigrid levels are cached during the solver setup phase to increase the
efficiency of the overall solution process. The storage cost of these matrices is minimal and scales
inversely in proportion to the number of MPI tasks.

Computational costs
The two main procedures that influence the overall computational cost of the proposed multigrid
solution scheme are: i) constructing and applying the additive Schwarz smoothers and ii) solving
the coarse problem.
Construction of the AS smoothers following (12) entails the inversion of sub-matrices derived from
basis function groups. The cost of this operation is dictated by the number and size of these sub-
matrices. The number of sub-matrices increases linearly with the number of elements. The maximum
size of a sub-matrix formed from the additive Schwarz groups, denoted by mmax, is proportional to
the polynomial order p, the spatial dimension d, the manner in which the AS groups are selected
(elementwise or patchwise selection) and the number of unknown field variables denoted by nf . For
a Poisson problem nf = 1 while nf = 3 for a three-dimensional linear elastic problem. Since the
number of DOFs associated with the topological components for the tensor product and trunk space
elements is known [53], it is possible to compute an upper bound for mmax for uniform grids, see
Table 1 and Figure 8a.

tensor product space trunk space

nf (np+ 1)3 nf (n+ 1)2(3np− 2n+ 1) for p < 4

0.5nf (n+ 1)(3n2p2 − 9n2p+ 6np+ 14n2 − 2n+ 2) for 4 ≤ p ≤ 5

nf (n3p3 − 3n3p2 + 9n2p2 + 20n3p− 9n2p+ 18(np− n3 + 2n2) + 6) for p ≥ 6

Table 1: Maximum size of the additive Schwarz groups, mmax, in a uniform three-dimensional grid.
p represents the element polynomial order, nf the number of field variables in the problem
and n is a factor that is equal to one for elementwise blocks and equal to two when patchwise
block selection is applied.

In the case of multi-level hp-grids, mmax is not bounded and its size depends on the refinement
level k and the refinement pattern applied to the mesh elements. Figure 8b shows the value of mmax

for the benchmark problem considered in Section 4.3. From Table 1 and Figure 8 it is clear that
the inversion of the patchwise additive Schwarz sub-matrices can become increasingly expensive for
high polynomial orders and refinement levels. It is therefore important that optimized algorithms
are used to perform these inversions. Our code framework makes use of distributed and shared
memory parallelism to accelerate the construction of the additive Schwarz smoothers. For “small”
sub-matrices, where Ai ∈ Rm×m and m < 1000, the built-in invert function of the BOOST library
is used for the inversion. When m exceeds 1000, the direct solver Pardiso [61] is used to invert

13



Ai by solving an equation system with m righthand side vectors. This operation can be written
as AiX = B, where B is a m ×m matrix whose columns are made up of the unit vectors ej with
j ∈ [0,m].

1 2 3 4 5 6100

101

102

103

104

Polynomial order p

M
ax

im
u
m

gr
ou

p
si
ze

patchwise AS groups, product space
patchwise AS groups, trunk space

elementwise AS groups, product space
elementwise AS groups, trunk space

(a) Maximum AS group size for uniform grids.

1 2 3 4 5 6100

101

102

103

104

Polynomial order p

M
ax

im
u
m

gr
ou

p
si
ze

k = 0
k = 1
k = 2

(b) Maximum group size for the benchmark example in-
volving multi-level hp-refinement in Section 4.3.

Figure 8: Illustration of the maximum size of the basis function groups used to construct the additive
Schwarz smoothers for three-dimensional linear elastic problems.

The use of the Epetra package for the storage of the additive Schwarz smoothers M−1
` allows our

numerical code to make use of its optimized parallel multiplication kernels. This ensures that the
smoothers can be applied in an efficient and scalable manner. We again leverage the AztecOO package
in Trilinos for the solution of the coarse systems with p = 1 and k = 0. These systems are solved
using the package’s parallel CG solver and the additive Schwarz preconditioner published in [13].

4 Numerical examples

The following section investigates the performance of the proposed hierarchical multigrid framework
in a series of numerical examples. We use the multigrid V-cycle algorithm primarily as a precondi-
tioner within the CG method but also show results in which the algorithm is utilized as a stand-alone
solver. The quality of the solution obtained in the different examples is measured by monitoring the
norm of the relative residual defined as

‖ri‖2
‖b‖2

=
‖b−Axi‖2
‖b‖2

(14)

with the righthand side vector b and the terms ri and xi that denote the residual and approximation
of the finest grid in the ith iteration, respectively. When the multigrid algorithm is used as a solver,
the contraction number ρi, defined as the quotient between two consecutive residual norms i.e.,

ρi =
‖ri‖2
‖ri−1‖2

, (15)

is also used as a measure to judge the effectiveness of the solution scheme. ρmax is a measure
that denotes the maximum contraction number (largest reduction factor) in a series of iterations.
Only symmetric positive definite systems arising from problems in linear elasticity or the Poisson

14



equation are considered in this section. A total of five pre- and post-smoothing steps are applied on
every multigrid level ` 6= 0 in each simulation. All computations are performed on the SuperMUC-NG
system hosted at the Leibniz Supercomputing Center in Garching, Germany. The compute nodes used
have an architecture comprising dual-socket Intel Xeon Scalable Platinum 8168 processors (Skylake).
Each node has a total of 48 cores and 96GB of main memory. Furthermore, the following compiler
and library versions are used: IntelMPI compiler version 19.0, Trilinos 12.12.1 and the GNU compiler
7.0. The most aggressive level of compiler optimization flags are chosen for the nodal architecture
and include -O3 and -funroll-loops among others.

4.1 Poisson problem on a square domain

The first numerical example investigates the performance of the proposed hp-multigrid algorithm
as a stand-alone solver and as a preconditioner within a CG scheme. It aims to demonstrate the
effectiveness of the additive Schwarz technique when used as a smoother for finite cell problems on
uniform meshes. We consider a Poisson problem posed on a square domain of unit length in which
the physical domain is rotated about the origin with respect to a fixed background grid as shown
in Figure 9. This setup results in different cut scenarios when the angle of rotation ψ is varied.
The method of manufactured solutions is applied in this numerical test and a temperature field ū is
chosen such that

∂ΩD x

y

x′

y′

Ωphys

Ωfict

ψ

(a) Geometry of the rotating square domain. (b) Prescribed solution.

Figure 9: Rotating Poisson problem with a manufactured solution.

ū =
1

2κa2
cos(a x′) sin(a y′), (16)

with a = 3
2π and x′, y′ denoting the coordinates of the rotated coordinate system defined at the

center of the domain. A source term s is derived from the manufactured solution following the
Poisson equation −κ∆u = s with s = cos(a x′) sin(a y′) and applied in Ωphys. Dirichlet boundary
conditions are prescribed on all edges of the square domain such that u = ū on ΓD. These constraints
are enforced using the penalty method with β = 104. A value of α = 10−8 is applied in Ωfict and a
value of κ = 10 is used in Ωphys.

15



4.1.1 Convergence behavior in the mesh-fitting case

We first analyze the performance of the hierarchical multigrid scheme in the mesh-fitting case where
ψ = 0. We consider uniform grids using high-order elements with different polynomial orders with p ∈
[2, . . . , 5] and mesh sizes h = {1

8 ,
1
16 ,

1
32 ,

1
64}. Moreover, the effectiveness of four different smoothers

is investigated: i) Jacobi smoothing, ii) Gauss-Seidel smoothing, iii) additive Schwarz smoothing
with elementwise blocks and iv) additive Schwarz smoothing with patchwise blocks. In the study at
hand, the convergence behavior of the hierarchical multigrid approach as a stand-alone solver and a
preconditioner is analyzed for the different combinations of smoother, polynomial orders and mesh
sizes. Each solver is terminated when the value of the relative residual is below 10−9 or when the
number of iterations exceeds 500. The ∗ symbol is used to represent scenarios in which the solver
did not converge within 500 iterations. The results of this study are summarized in Table 2.

Table 2 shows the convergence behavior of the multigrid algorithm as a solver and preconditioner
for ψ = 0◦. In this boundary-conforming example, all smoothers achieve convergence rates that are
independent of the mesh size h. These results indicate the correct implementation of the multigrid
scheme. These convergence rates are, however, dependent on the polynomial order for the Jacobi,
Gauss-Seidel and elementwise additive Schwarz smoothers as shown in Table 2 and indicated by the
maximum contraction of the residual for a mesh with h = 1

32 recorded in Table 3. These smoothers
appear to perform better for odd polynomial orders than for even orders. A similar odd-even pattern
is reported in [24] and may be due to the asymmetry of the manufactured solution. Convergence rates
independent of the polynomial order p are obtained using the patchwise additive Schwarz smoother.

4.1.2 Convergence behavior in immersed configurations

The multigrid algorithm is now used in an immersed setting, in which the domain Ωphys is rotated
about the origin as shown in Figure 9a. In analogy to Section 4.1, we compare the performance of
different smoothers for ψ = 30◦ and summarize the results in Table 4. The effect of the ill-conditioning
due to the cut cells is clearly seen in this example as the standard smoothers, i.e. the Jacobi and
Gauss-Seidel methods, fail to improve the conditioning of the linear systems and are characterized
by poor convergence of the multigrid solution techniques applied in this study. The additive Schwarz
smoothers do a better job of detecting almost linear dependent functions as shown in Table 4. Note
that the elementwise smoother may contain a few small modes that cause slow convergence when
multigrid is utilized as a stand-alone solver. These modes, however, only result in a few additional
CG iterations, when the multigrid algorithm is used as a preconditioner. The patchwise smoother
robustly deals with all small modes due to cut cells and results in a convergence behavior that is
independent of h and p. Table 5 presents the maximum contraction number for different polynomial
orders of a mesh with h = 1

32 .

16



Rotating Poisson problem: Convergence study for ψ = 0◦

Multigrid as a solver
Jacobi smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 23 25 25 24
3 17 16 15 15
4 31 33 35 37
5 24 24 26 27

CG with multigrid preconditioner
Jacobi smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 10 10 10 10
3 8 8 8 8
4 13 13 13 13
5 10 11 11 11

Multigrid as a solver
Gauss-Seidel smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 7 7 7 7
3 6 6 6 6
4 13 13 14 14
5 10 10 10 10

CG with multigrid preconditioner
symm. Gauss-Seidel smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 6 6 6 6
3 5 5 5 5
4 8 8 8 8
5 8 7 7 7

Multigrid as a solver
elementwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 12 13 13 13
3 10 10 10 9
4 17 17 17 17
5 14 12 13 13

CG with multigrid preconditioner
elementwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 7 8 8 8
3 7 7 7 7
4 9 9 9 9
5 8 8 8 8

Multigrid as a solver
patchwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 8 8 8 7
3 7 6 6 6
4 7 7 7 6
5 6 6 5 5

CG with multigrid preconditioner
patchwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 6 6 6 6
3 6 5 5 5
4 6 6 6 6
5 5 5 5 5

Table 2: Convergence study for ψ = 0 comparing the performance of different smoothers for varying
element sizes and polynomial orders. The figures in the tables represent the number of
iterations required to reach a tolerance in the relative residual of 10−9. Five pre- and post-
smoothing steps are performed per V-cycle on each multigrid level with ` 6= 0.

Smoother
p

2 3 4 5

Jacobi .478 .391 .683 .617
Gauss-Seidel .125 .095 .362 .255

Elementwise AS .309 .252 .430 .414
Patchwise AS .162 .164 .140 .162

Table 3: Maximum contraction number ρmax of the p-multigrid solver for h = 1
32 and ψ = 0◦.

17



Rotating Poisson problem: Convergence study for ψ = 30◦

Multigrid as a solver
Jacobi smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 * * * *
3 * * * *
4 * * * *
5 * * * *

CG with multigrid preconditioner
Jacobi smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 133 162 201 180
3 * * * *
4 * * * *
5 * * * *

Multigrid as a solver
Gauss-Seidel smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 * * * *
3 * * * *
4 * * * *
5 * * * *

CG with multigrid preconditioner
symm. Gauss-Seidel smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 8 139 240 279
3 * * * *
4 * * * *
5 * * * *

Multigrid as a solver
elementwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 19 15 13 12
3 19 14 12 11
4 20 18 17 17
5 20 16 15 15

CG with multigrid preconditioner
elementwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 9 9 9 8
3 11 10 9 8
4 11 11 10 10
5 12 10 9 9

Multigrid as a solver
patchwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 8 8 7 6
3 6 7 6 5
4 5 6 5 5
5 5 5 5 4

CG with multigrid preconditioner
patchwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 7 6 6 6
3 6 6 6 5
4 5 6 5 5
5 5 5 5 5

Table 4: Convergence study for ψ = 30◦ comparing the performance of different smoothers for vary-
ing element sizes and polynomial orders. The figures in the tables represent the number
of iterations required by the solver while the symbol * indicates that the solver did not
converge to a tolerance of 10−9 within 500 iterations. Five pre- and post-smoothing steps
are performed per V-cycle on each multigrid level with ` 6= 0

Smoother
p

2 3 4 5

Jacobi .998 .998 .998 .998
Gauss-Seidel .996 div. div. div.

Elementwise AS .356 .355 .521 .484
Patchwise AS .142 .117 .100 .108

Table 5: Maximum contraction number ρmax of the p-multigrid solver for h = 1
32 and ψ = 30◦. The

symbol div. indicates that the solver diverged.

18



4.2 Perforated linear elastic plate

The previous numerical example established the suitability of using a multigrid preconditioner in
conjunction with additive Schwarz smoothers for FCM problems arising from the Poisson equation.
The performance of this preconditioner is now investigated in the context of linear elasticity. To this
end, a square domain with a length of l = 4 is subjected to a tensional force on one end and fully
clamped on the other end as depicted in Figure 10a. The square domain has four circular cavities
with a radius of 0.3

√
2 and is characterized by an elastic modulus E = 2.069·105 MPa and a Poisson’s

ratio ν = 0.29. The finite cell method is applied in this example with α = 10−8 in Ωfict and a penalty
parameter β = 108. The number of elements per direction is chosen such that h ∈ {1

8 ,
1
16 ,

1
32 ,

1
64}.

x

y

ty= 100

(a) Perforated linear elastic plate. (b) Von Mises stress.

Figure 10: Setup and von Mises stress of the linear elastic perforated plate example.

Using the setup shown in Figure 10a, numerical studies are carried out that investigate the conver-
gence of a CG solver when the presented additive Schwarz techniques are employed as preconditioners
or as smoothers within an hp-multigrid preconditioner. The study is conducted on multi-level hp-
refined grids with a fixed polynomial order and varying levels of refinement. Elements that are
intersected by the immersed boundary are refined recursively to a predefined depth as shown in
Figure 10a.

Table 6 shows the number of iterations required by the different preconditioner and smoother con-
figurations for multilevel hp-grids with quadratic elements and varying levels of refinement. When the
elementwise additive Schwarz blocks are utilized as both smoothers and preconditioners, increasing
the refinement depth leads to an increase in the number of iterations. The multigrid algorithm that
uses these elementwise blocks for smoothing does not achieve convergence rates that are indepen-
dent of the mesh parameter h. This behavior is attributed to the fact that certain small modes can
remain untreated by the elementwise blocks leading to slow convergence. In contrast, the patchwise
blocks yield convergence rates that are independent of the refinement depth employed. Furthermore,
the multigrid algorithm that employs a patchwise smoothing approach achieves mesh-independent
convergence rates.

19



CG with elementwise AS
preconditioner

k
h 1

8
1
16

1
32

1
64

0 60 76 135 262
1 81 220 234 1192
2 183 367 807 2114
3 294 483 1803 2566

CG with multigrid preconditioner
elementwise AS smoother (5,5)

k
h 1

8
1
16

1
32

1
64

0 12 9 9 9
1 15 30 29 79
2 31 46 63 115
3 50 67 102 114

CG with patchwise AS
preconditioner

k
h 1

8
1
16

1
32

1
64

0 43 64 109 210
1 43 64 109 210
2 43 65 109 210
3 43 64 109 210

CG with multigrid preconditioner
patchwise AS smoother (5,5)

k
h 1

8
1
16

1
32

1
64

2 7 7 7 7
3 7 7 7 7
4 7 7 6 6
5 6 6 6 6

Table 6: Perforated plate example: Convergence behavior of a CG solver for four levels of refinement
and four different preconditioners. The study considers multi-level hp-refined finite cell
meshes with varying resolutions and a fixed polynomial order of p = 2.

4.3 Cube with spherical cavities

To assess the performance of the proposed hp-multigrid approach in a three-dimensional setting, we
now consider a simple example consisting of a linear elastic cube of unit length with spherical cavities
subject to compressional loading. The cube has the same material properties as the perforated plate
in the previous example and the values of α = 10−8 and β = 1010 are chosen. The radii of the cavities
are again r = 0.3

√
2. A homogeneous pressure load P = 100 N/mm2 is applied on the upper surface

of the cube as shown in Figure 11a.

(a) Cube geometry. (b) Von Mises stress.

Figure 11: Cube with spherical cavities example.

20



Influence of the polynomial order

The effect of the element polynomial order on the convergence of a CG solver with a p-multigrid
preconditioner utilizing elementwise additive Schwarz smoothing is the subject of the following study.
To this end, a sequence of meshes with varying element sizes is analyzed. The mesh size is chosen
such that h = { 1

32 ,
1
64 ,

1
128}. The number of unknowns ranges from 417 339 for the coarsest p = 2

mesh to 135 864 459 for the finest mesh with p = 5. Similar to the two-dimensional benchmark cases,
the proposed p-multigrid approach leads to convergence rates that are independent of the mesh size
h as shown in Figure 12. The number of iterations ranges between 16 and 19 for p = 2, between 14
and 15 for p = 3, between 22 and 23 for p = 4 and between 22 and 26 for p = 5.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 1
32

h = 1
64

h = 1
128

(a) Relative residual for p = 2.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 1
32

h = 1
64

h = 1
128

(b) Relative residual for p = 3.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 1
32

h = 1
64

h = 1
128

(c) Relative residual for p = 4.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 1
32

h = 1
64

h = 1
128

(d) Relative residual for p = 5.

Figure 12: Convergence of the CG solver with a p-multigrid preconditioner and elementwise additive
Schwarz smoothing for hexahedral trunk space elements.

Figure 13 shows the computational cost of the CG solver with a p-multigrid focusing on the time
spent to construct the smoother and to perform the CG iterations. The latter procedure includes
the application of the smoother and the solution of the coarse problem. From Figures 13a and 13b
one can see that the computational cost of the solver increases for higher polynomial orders.

21



p = 2 p = 3 p = 4 p = 5

0

20

40

1.13

5.31

17.23

46.16

1.23 2.83

13.1

31.35

T
im

e
[s
]

h = 1
32

construct smoother

perform iterations

(a) CPU timings for h = 1
32

. All simulations are run on
96 cores.

p = 2 p = 3 p = 4 p = 5

0

20

40

1.11

7.08

21.93

48.29

2.04 3.38

12.97

33.6

T
im

e
[s
]

h = 1
64

construct smoother

perform iterations

(b) CPU timings for h = 1
64

. All simulations are run on 768
cores.

Figure 13: Execution time for the CG solver with a p-multigrid preconditioner.

Influence of the refinement level

The effect of the refinement level on the performance of the hp-multigrid preconditioner is now
studied. Starting from an initial grid of 323 elements with p = 2, the mesh is refined in two steps
towards the spherical cavities yielding a total of 4.1 · 105, 5.2 · 105 and 8.9 · 105 DOFs for k = 0,
k = 1 and k = 2, respectively. The patchwise additive Schwarz groups are used to construct the
smoothers that are applied on every multigrid level ` 6= 0 in analogy to the two-dimensional examples
considered in the previous studies. This approach yields convergence rates that are independent of
the refinement level as shown in Figure 14a.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

k = 0 k = 1 k = 2

(a) Convergence behavior.

k = 0 k = 1 k = 2

0

100

200

3.5
14.77

183.79

0.87 1.21 4.4

T
im

e
[s
]

construct smoother

perform iterations

(b) Computation cost of the hierarchical multigrid solver
for a set of simulations running on 384 cores.

Figure 14: Performance of the CG solver with an hp-multigrid preconditioner and patchwise additive
Schwarz smoothing for a three-dimensional benchmark involving multi-level hp-refinement.

22



The computational cost of the solver for the different refinement levels considered is shown in
Figure 14b. The results shown are obtained in hybrid simulations on 394 cores that are partitioned
into 32 MPI tasks each with 6 OMP threads. As expected, the inversion of the sub-matrices for the
construction of the patchwise AS smoothers is the most time-consuming operation. This procedure
is performed using the sparse direct solver Pardiso, since it outperforms the built-in invert function
of the BOOST library [62] for large matrices. The time spent setting up the patchwise smoothers can
be further reduced by the use of a more optimized inversion algorithm. Moreover, it is possible to
conceive different strategies for the grouping of basis functions that yield smaller group sizes and
therefore lower computation times.

4.3.1 Loading of an aluminum rod

The next example considers the loading of an aluminum rod with an elastic modulus E = 70 GPa
and a Poisson’s ratio ν = 0.3. Figure 15a shows the rod’s geometry with lx = 150 mm, ly = 60 mm
and lz = 20 mm. The cylindrical surfaces labeled ΩD are fixed using the penalty method with a
penalty parameter β = 106. A surface load tx = 10 N/mm2 is applied on the surfaces labeled ΩN in
the direction of the rod’s shaft. The resultant force acting on the rod is Fx = 2πrh · tx = 2π ·20 ·10 ≈
12.566 kN. Three finite cell discretizations with h ∈ {2, 1, 0.5} are considered and the polynomial
degree of the grids is chosen as p ∈ {2, 4}. Table 7 summarizes the number of DOFs in each grid. An
octree scheme with a depth of 3 is used for the integration of the element matrices and the righthand
side.

lx

lz

ly

∂ΩN

∂ΩD

(a) Rod geometry and boundary conditions

(b) Finite cell mesh.

(c) Von Mises stress

Figure 15: Loading of an aluminum connecting rod.

23



DOFs

h mesh resolution p = 2 p = 3 p = 4

2 75× 30× 10 156 594 271 596 492 285
1 150× 60× 20 1 066 059 1 861 425 3 410 673

0.5 300× 120× 40 7 880 868 13 755 963 25 365 804

Table 7: Summary of the number of DOFs for the different discretizations considered in the aluminum
rod example.

CG with elementwise AS
preconditioner

p
h

2 1 0.5

2 766 1502 2966
3 770 1508 2973
4 835 1593 3254

CG with multigrid preconditioner
elementwise AS smoother (5,5)

p
h

2 1 0.5

2 16 15 15
3 14 13 13
4 18 17 17

Table 8: Aluminium rod example: Convergence of a CG solver with two different preconditioners; i)
elementwise additive Schwarz preconditioner and ii) p-multigrid preconditioner with elemen-
twise additive Schwarz smoothing. The considered grids consist of trunk space hexahedral
elements with different polynomial orders.

Comparison to different iterative solvers
The study at hand compares the performance of the proposed multigrid solution scheme to alternative
iterative approaches. In the first part of this study, the convergence behavior of the multigrid
scheme with elementwise AS smoothing is compared to a CG solver that uses the additive Schwarz
technique as a preconditioner. The results for the different finite cell discretizations considered in
this example are presented in Table 8. Both preconditioners yield the expected convergence rates
i.e. the elementwise additive Schwarz preconditioner yields rates proportional to h−1, while the use
of the p-multigrid preconditioner leads to convergence rates independent of the mesh size. Moreover,
there is only a minimal difference in the convergence behavior of different polynomial orders for all
preconditioners.

Next, we compare the convergence behavior and execution time of the presented multigrid approach
to different solvers and preconditioners available in the AztecOO package of Trilinos. The solvers
applied include: i) a CG solver with diagonal scaling, denoted by cg-diag, ii) a CG solver with
elementwise additive Schwarz preconditioning, denoted by cg-eas, iii) the solution approach presented
in this contribution that consists of a CG solver with a p-multigrid preconditioner and elementwise
additive Schwarz smoothing, denoted by cgmg-eas iv) a CG solver with an algebraic multigrid solver
based on smoothed aggregation, denoted by cg-amg and v) a GMRES solver with an incomplete
LU preconditioner, gmres-ilu. Note that the solvers cg-diag, cg-amg and grmes-ilu are included in
the AztecOO package. These different solvers are used to solve the linear systems arising from the
aluminium rod with h = 2 and p = 3. All simulations are carried out on 192 cores that are divided
into 32 MPI tasks each with 6 OpenMP threads.

Figure 16 presents the comparison of the convergence behavior and execution time for the solution
of a FCM problem on a complex geometry using five different solver and preconditioner configura-
tions. The solver time shown in Figure 16b includes both the construction and application of the
solvers. The results affirm that the additive Schwarz-based solution techniques are well suited for
large immersed systems as they not only have convergence rates superior to those of conventional
solvers but also exhibit lower computational times. It should be noted that the poor performance of

24



the cg-amg and gmres-ilu solvers is attributed to the ill-conditioning due to the cut elements, which
both solvers fail to adequately address.

100 101 102 103 104 105

102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

cgmg-eas cg-eas gmres-ilu
cg-diag cg-amg

(a) Relative residual.

cg
m
g-
ea
s

cg
-e
as

cg
-d
ia
g

cg
-a
m
g

gm
re
s-
il
u

0

500

1000

1500

2000

1.671.7926.46

1,867

470

T
im

e
[s
]

(b) Solver time.

Figure 16: Comparison of the convergence behavior and execution time of different iterative solvers
in the aluminum rod example.

4.3.2 Weak scalability: Popcorn benchmark

The final numerical example considers a classical immersed finite element benchmark on popcorn
geometry. This geometry is commonly used in interface problems e.g. [63, 64] and immersed analyses,
see e.g. [4]. A level-set function φ(x, y, z) is used to describe the surface of the popcorn geometry
where

φ(x, y, z) =
√
x2 + y2 + z2 − r0 −

11∑
k=0

Ae−((x−xk)2+(y−yk)2+(z−zk)2)/σ2
, (17)

and

(xk, yk, zk) =
r0√

5

(
2 cos

(2kπ

5

)
, sin

(2kπ

5

)
, 1
)
, for k ∈ [0, 4],

(xk, yk, zk) =
r0√

5

(
2 cos

((2(k − 5)− 1)π

5

)
, sin

((2(k − 5)− 1)π

5

)
, 1
)
, for k ∈ [5, 9],

(x10, y10, z10) = (0, 0, r0),

(x11, y11, z11) = (0, 0,−r0),

with the parameters r0=0.6, A=3 and σ=0.2. The physical domain Ωphys constitutes all points lying
on the popcorn surface and its interior, i.e. all points with φ ≤ 0. Following [63], a Poisson problem
with a prescribed solution field

u(x, y, z) = x3 + xy2 + y3 + z4 + sin(3(x2 + y2)), x ∈ Ωphys. (18)

25



is considered in the current example. This solution is defined through a source term s = ∆u and the
enforcement of Dirichlet boundary conditions on φ = 0. A marching cubes algorithm is run during the
simulation to obtain the surfaces required for boundary condition application. The penalty method
with β = 104 is used to apply the Dirichlet boundary conditions and the value of α is set to 10−6.
An embedding domain consisting of a cube (−1, 1)3 is used in all numerical investigations.

(a) Popcorn geometry. (b) Finite cell mesh.

Figure 17: Poisson problem posed on a popcorn domain.

A weak scaling analysis is performed to investigate the efficiency of the proposed hierarchical
multigrid approach. The simulations are performed on the SuperMUC-NG supercomputer at the
Leibniz Supercomputing Center in Garching, Germany. The number of elements is increased in 12
steps while at the same time increasing the number of compute nodes nnodes, from 1 to 2048. The 48
cores within a node are partitioned such that each node has a total of 8 MPI tasks and 6 OpenMP
threads per task. The computational domain is generated in a fully parallel manner and discretized
using hexahedral trunk space elements with a polynomial order p = 3. The number of elements
per MPI task is approximately 41 000 in all simulations. The simulation with the coarsest mesh
comprising a total of 250 336 elements and 1.83 · 106 DOFs is run on 48 cores while the one with
the finest mesh is run on 98 304 cores, and has a total of 460 980 224 elements and approximately
3.2 · 109 DOFs. The different linear systems are solved using a parallel CG solver with a p-multigrid
preconditioner and elementwise additive Schwarz smoothing.

26



106 107 108 109 1010

5

10

15

20

25

30

Number of DOFs

N
u
m
b
er

of
C
G

it
er
at
io
n
s

(a) Convergence behavior.

106 107 108 109 1010
10−1

100

101

102

Number of DOFs

T
im

e
[s
]

ideal scaling
PCG iterations

Smoother construction

(b) Solver time.

Figure 18: Weak scaling analysis of the popcorn benchmark.

Figure 18 shows the results of the weak scaling analysis. It reports the number of iterations
needed by the solver and the time spent to construct the additive Schwarz smoother and solve linear
systems. The multigrid approach proposed in this manuscript shows favorable weak scaling, as the
computational time does not significantly increase with an increase of the problem size.

5 Conclusions

The paper at hand presents a hierarchical multigrid method for immersed high-order discretizations
based on the finite cell method and multi-level hp-refinement. This scheme robustly deals with ill-
conditioning due to cut elements resulting in convergence rates independent of the cut configuration,
element size and in certain scenarios, the polynomial order. The applicability of the scheme for
immersed finite cell analyses on large distributed memory systems is portrayed in a collection of
second-order problems arising from the Poisson equation and linear elasticity.

The cornerstone of this contribution is the development of a simple and efficient multigrid scheme
that exploits the hierarchical nature of the basis functions in the finite cell method and the multi-level
hp-scheme. For uniform grids, the multigrid levels are constructed using an arithmetic p-sequence that
progressively reduces to polynomial order until p = 1. The nested subspace of a certain polynomial
order is spanned by the basis functions up to and including this order. The p-multigrid approach is
combined with an h-coarsening of the refined elements in the case of multi-level hp-refined grids. The
main benefit of the proposed scheme is its simplicity, as the restriction and prolongation operations
reduce to binary operations that can be easily performed without the assembly of restriction and
prolongation operators.

Additive Schwarz-based smoothers are applied in this contribution to deal with the ill-conditioning
due to cut cells. Two different procedures are suggested for finite cell discretizations: an elementwise
approach is applied to uniform grids and a patchwise approach is used for multi-level hp-refined grids.
Both smoothers are shown to sufficiently deal with small modes that occur on cut cells and yield
convergence rates independent of the cut configuration and the mesh size h. The patchwise additive
Schwarz smoother is shown to yield convergence rates independent of the polynomial order in the
two dimensional numerical tests.

Furthermore, we demonstrate that the proposed multigrid scheme can be implemented within an
efficient finite element framework in a massively parallel environment. A series of numerical examples
demonstrate the suitability of the presented solution technique for large-scale immersed analysis.
Faster convergence rates are achieved when the multigrid scheme is used as a preconditioner within a

27



CG method rather than a stand-alone solver. The execution time for selected benchmark examples is
also provided. These results indicated that the presented multigrid scheme exhibits low computation
times as well as favorable weak scalability. The proposed scheme is shown to outperform standard
iterative solvers both in terms of iteration counts and execution time for immersed systems.

Although the solution scheme presented in this contribution significantly improves the solution
of high-order immersed systems involving hp-refinement, it can be further developed to increase
its applicability. The construction of the patchwise preconditioner for high polynomials orders and
several levels of refinement can be improved by applying more efficient matrix inversion techniques.
This can be combined with the use of alternative strategies for the selection of additive Schwarz
groups. These strategies can be designed to yield smaller group sizes and lower execution times.
In this work, additive Schwarz smoothers are applied on every multigrid level with ` 6= 0. The use
of variable smoothing techniques on different multigrid levels is an important subject that can be
addressed in future research. Apart from improving the efficiency of the solver, it would be also
beneficial to invest time in a thorough mathematical analysis of the proposed multigrid method.
This entails the derivation of bounds for the condition numbers as well as mathematical proofs for
the multigrid method in an immersed setting.

Acknowledgements

The authors gratefully acknowledge the Competence Network for Scientific High Performance Com-
puting in Bavaria (KONWIHR) and the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu)
for the financial support and computing time provided on the SUPERMUG-NG at Leibniz Super-
computing Centre (www.lrz.de). We also extend our gratitude to the International Graduate School
of Science and Engineering (IGSSE) of the Technical University of Munich for its financial support as
well as the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer
414265976 – TRR 277.

28



References

[1] J. Parvizian, A. Düster, and E. Rank, “Finite cell method,” Computational Mechanics, vol. 41,
no. 1, pp. 121–133, 2007.

[2] A. Düster, J. Parvizian, Z. Yang, and E. Rank, “The finite cell method for three-dimensional
problems of solid mechanics,” Computer Methods in Applied Mechanics and Engineering,
vol. 197, no. 45–48, pp. 3768–3782, 2008.

[3] E. Burman and P. Hansbo, “Fictitious domain finite element methods using cut elements: II. A
stabilized Nitsche method,” Applied Numerical Mathematics, vol. 62, no. 4, pp. 328 – 341, 2012.

[4] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing, “CutFEM: Discretizing geom-
etry and partial differential equations,” International Journal for Numerical Methods in Engi-
neering, vol. 104, no. 7, pp. 472–501, 2014.

[5] S. Badia, F. Verdugo, and A. F. Mart́ın, “The aggregated unfitted finite element method for
elliptic problems,” Computer Methods in Applied Mechanics and Engineering, vol. 336, pp. 533–
553, 2018.

[6] E. Nadal Soriano, J. Ródenas, J. Albelda, M. Tur, J. Tarancón, and F. Fuenmayor, “Efficient
finite element methodology based on cartesian grids: Application to structural shape optimiza-
tion,” Abstract and Applied Analysis, 2013.

[7] J. M. Navarro-Jiménez, M. Tur, F. J. Fuenmayor, and J. J. Ródenas, “On the effect of the
contact surface definition in the cartesian grid finite element method,” Advanced Modeling and
Simulation in Engineering Sciences, vol. 5, p. 12, May 2018.

[8] A. Main and G. Scovazzi, “The shifted boundary method for embedded domain computations.
Part I: Poisson and Stokes problems,” Journal of Computational Physics, vol. 372, pp. 972–995,
2018.

[9] A. Main and G. Scovazzi, “The shifted boundary method for embedded domain computations.
Part II: Linear advection-diffusion and incompressible Navier-Stokes equations,” Journal of
Computational Physics, vol. 372, pp. 996–1026, 2018.

[10] F. de Prenter, C.V. Verhoosel, G.J. van Zwieten, and E.H. van Brummelen, “Condition number
analysis and preconditioning of the finite cell method,” Computer Methods in Applied Mechanics
and Engineering, vol. 316, pp. 297–327, 2017.

[11] S. Badia and F. Verdugo, “Robust and scalable domain decomposition solvers for unfitted finite
element methods,” Journal of Computational and Applied Mathematics, vol. 344, pp. 740–759,
2017.

[12] F. de Prenter, C. Verhoosel, and E. van Brummelen, “Preconditioning immersed isogeomet-
ric finite element methods with application to flow problems,” Computer Methods in Applied
Mechanics and Engineering, vol. 348, pp. 604–631, 2019.

[13] J. Jomo, F. de Prenter, M. Elhaddad, D. D’Angella, C. Verhoosel, S. Kollmannsberger,
J. Kirschke, V. Nübel, E. van Brummelen, and E. Rank, “Robust and parallel scalable iterative
solutions for large-scale finite cell analyses,” Finite Elements in Analysis and Design, vol. 163,
pp. 14–30, 2019.

[14] E. Burman, “Ghost penalty,” Comptes Rendus Mathematique, vol. 348, no. 21, pp. 1217 – 1220,
2010.

[15] D. Elfverson, M. G. Larson, and K. Larsson, “CutIGA with basis function removal,” Advanced
Modeling and Simulation in Engineering Sciences, vol. 5, no. 1, p. 6, 2018.

[16] B. Marussig and T. Hughes, “A Review of Trimming in Isogeometric Analysis: Challenges, Data
Exchange and Simulation Aspects,” Archives of Computational Methods in Engineering, vol. 25,
no. 4, pp. 1059–1127, 2017.

[17] W. Hackbusch and U. Trottenberg, Multigrid Methods. Proceedings of the Conference Held at
Köln-Porz, November 23-27, 1981. 01 1982.

29



[18] W. Hackbusch, Multi-Grid Methods and Applications. Springer Series in Computational Math-
ematics, Springer Berlin Heidelberg, 2013.

[19] U. Trottenberg, C. Ulrich Trottenberg, C. Oosterlee, A. Schuller, A. Brandt, P. Oswald, and
K. Stüben, Multigrid. Elsevier Science, 2001.

[20] W. Briggs, V. Henson, and S. McCormick, A Multigrid Tutorial, 2nd Edition. 01 2000.
[21] P. Wesseling, An Introduction to Multigrid Methods. An Introduction to Multigrid Methods,

R.T. Edwards, 2004.
[22] Y. Shapira, Matrix-Based Multigrid: Theory and Applications. Numerical methods and algo-

rithms, Kluwer Academic Publishers, 2003.
[23] A. W. Craig and O. C. Zienkiewicz, “A multigrid algorithm using a hierarchical finite element

basis,” in Multigrid Methods for Integral and Differential Equations (D. J. Paddon and Holstein,
eds.), pp. 310–312, Oxford,: Clarendon Press, 1985.

[24] I. Babuška, M. Griebel, and J. Pitkäranta, “The problem of selecting the shape functions for
a p-type finite element,” International Journal for Numerical Methods in Engineering, vol. 28,
no. 8, pp. 1891–1908, 1989.

[25] C. Hofreither, B. Jüttler, G. Kiss, and W. Zulehner, “Multigrid methods for isogeometric analysis
with THB-splines,” Computer Methods in Applied Mechanics and Engineering, vol. 308, pp. 96–
112, 2016.

[26] K. Gahalaut, J. Kraus, and S. Tomar, “Multigrid methods for isogeometric discretization,”
Computer Methods in Applied Mechanics and Engineering, vol. 253, pp. 413–425, 2013.

[27] R. Tielen, M. Möller, D. Göddeke, and C. Vuik, “p-multigrid methods and their comparison to
h-multigrid methods within Isogeometric Analysis,” Computer Methods in Applied Mechanics
and Engineering, vol. 372, p. 113347, 2020.

[28] A. P. de la Riva, C. Rodrigo, and F. J. Gaspar, “A Robust Multigrid Solver for Isogeometric
Analysis Based on Multiplicative Schwarz Smoothers,” SIAM Journal on Scientific Computing,
vol. 41, pp. 321–345, 2019.

[29] M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers, “Robust and opti-
mal multi-iterative techniques for IgA Galerkin linear systems,” Computer Methods in Applied
Mechanics and Engineering, vol. 284, pp. 230–264, 2015.

[30] M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers, “Symbol-Based Multi-
grid Methods for Galerkin B-Spline Isogeometric Analysis,” SIAM Journal on Numerical Anal-
ysis, vol. 55, no. 1, pp. 31–62, 2017.

[31] C. Bracco, D. Cho, C. Giannelli, and R. Vazquez, “BPX Preconditioners for Isogeometric Anal-
ysis Using (Truncated) Hierarchical B-splines,” 2019.

[32] F. Verdugo, A. F. Mart́ın, and S. Badia, “Distributed-memory parallelization of the aggregated
unfitted finite element method,” Computer Methods in Applied Mechanics and Engineering,
vol. 357, p. 112583, 2019.

[33] S. Badia, A. F. Mart́ın, E. Neiva, and F. Verdugo, “The aggregated unfitted finite element
method on parallel tree-based adaptive meshes,” preprint available on arXiv, 2020.

[34] S. Badia, A. F. Mart́ın, E. Neiva, and F. Verdugo, “A generic finite element framework on
parallel tree-based adaptive meshes,” preprint available on arXiv, 2020.

[35] A. Nüßing, Fitted and unitted finite element methods for solving the EEG forward problem. PhD
Thesis, University of Münster, Münster, 2018.

[36] F. de Prenter, C. V. Verhoosel, E. H. van Brummelen, J. A. Evans, C. Messe, J. Benzaken, and
K. Maute, “Multigrid solvers for immersed finite element methods and immersed isogeometric
analysis,” Computational Mechanics, 2019.

[37] S. Saberi, A. Vogel, and G. Meschke, “Parallel finite cell method with adaptive geometric multi-
grid,” in Euro-Par 2020: Parallel Processing (M. Malawski and K. Rzadca, eds.), (Cham),
pp. 578–593, Springer International Publishing, 2020.

30



[38] E. M. Rønquist and A. Patera, “Spectral element multigrid. I. Formulation and numerical re-
sults,” Journal of Scientific Computing, vol. 2, pp. 389–406, 1987.

[39] H. Yserentant, “Hierarchical bases of finite-element spaces in the discretization of nonsymmetric
elliptic boundary value problems,” Computing, vol. 35, pp. 39–49, 1985.

[40] H. Yserentant, “Hierarchical bases give conjugate gradient type methods a multigrid speed of
convergence,” Applied Mathematics and Computation, vol. 19, no. 1, pp. 347–358, 1986.

[41] S. Foresti, G. Brussino, S. Hassanzadeh, and V. Sonnad, “Multilevel solution of the p-version of
finite elements,” Computer Physics Communications, vol. 53, pp. 349–355, 05 1989.

[42] W. F. Mitchell, “The hp-multigrid method applied to hp-adaptive refinement of triangular
grids,” Numerical Linear Algebra with Applications, vol. 17, no. 2-3, pp. 211–228, 2010.

[43] C. R. Nastase and D. J. Mavriplis, “High-order discontinuous Galerkin methods using an hp-
multigrid approach,” Journal of Computational Physics, vol. 213, no. 1, pp. 330 – 357, 2006.

[44] H. Yserentant, “On the multi-level splitting of finite element spaces,” Numerische Mathematik,
vol. 49, pp. 379–412, 1986.

[45] N. Zander, T. Bog, S. Kollmannsberger, D. Schillinger, and E. Rank, “Multi-Level hp-
Adaptivity: High-Order Mesh Adaptivity without the Difficulties of Constraining Hanging
Nodes,” Computational Mechanics, vol. 55, no. 3, pp. 499–517, 2015.

[46] N. Zander, T. Bog, M. Elhaddad, F. Frischmann, S. Kollmannsberger, and E. Rank, “The
Multi-Level hp-Method for Three-Dimensional Problems: Dynamically Changing High-Order
Mesh Refinement with Arbitrary Hanging Nodes,” Computer Methods in Applied Mechanics
and Engineering, vol. 310, pp. 252–277, 2016.

[47] I. Babuska, B. Szabo, and I. Katz, “The p-Version of the Finite Element Method,” SIAM Journal
on Numerical Analysis, vol. 18, no. 3, pp. 515–545, 1981.

[48] M. Elhaddad, N. Zander, T. Bog, L. Kudela, S. Kollmannsberger, J. Kirschke, T. Baum,
M. Ruess, and E. Rank, “Multi-level hp-finite cell method for embedded interface problems
with application in biomechanics,” International Journal for Numerical Methods in Biomedical
Engineering, vol. 34, no. 4, p. e2951, 2018.

[49] A. Özcan, S. Kollmannsberger, J. Jomo, and E. Rank, “Residual stresses in metal deposition
modeling: Discretizations of higher order,” Computers & Mathematics with Applications, 2018.

[50] L. Hug, S. Kollmannsberger, Z. Yosibash, and E. Rank, “A 3D benchmark problem for crack
propagation in brittle fracture,” Computer Methods in Applied Mechanics and Engineering,
vol. 364, p. 112905, 2020.

[51] I. Babuška, “The Finite Element Method with Penalty,” Mathematics of Computation, vol. 27,
no. 122, p. 221, 1973.

[52] D. Schillinger and M. Ruess, “The Finite Cell Method: A Review in the Context of Higher-Order
Structural Analysis of CAD and Image-Based Geometric Models,” Archives of Computational
Methods in Engineering, vol. 22, no. 3, pp. 391–455, 2014.

[53] A. Düster, E. Rank, and B. A. Szabó, “The p-version of the finite element method and finite
cell methods,” in Encyclopedia of Computational Mechanics, vol. 2, pp. 1–35, Chichester, West
Sussex: John Wiley & Sons, 2017.

[54] D. D’Angella, N. Zander, S. Kollmannsberger, F. Frischmann, E. Rank, A. Schröder, and A. Re-
ali, “Multi-level hp-adaptivity and explicit error estimation,” Advanced Modeling and Simulation
in Engineering Sciences, vol. 3, no. 1, p. 33, 2016.

[55] V. Darrigrand, D. Pardo, T. Chaumont-Frelet, I. Gómez-Revuelto, and L. E. Garcia-Castillo,
“A painless automatic hp-adaptive strategy for elliptic problems,” Finite Elements in Analysis
and Design, vol. 178, p. 103424, 2020.

[56] N. Zander, Multi-Level hp-FEM: Dynamically Changing High-Order Mesh Refinement with Ar-
bitrary Hanging Nodes. PhD Thesis, Technische Universität München, Munich, 2016.

[57] Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2nd ed., 2003.

31



[58] M. P. Forum, “MPI: A Message-Passing Interface Standard,” tech. rep., Knoxville, TN, USA,
1994.

[59] OpenMP Architecture Review Board, “OpenMP Application Program Interface Version 3.0,”
2008.

[60] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,
K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro,
J. M. Willenbring, A. Williams, and K. S. Stanley, “An overview of the Trilinos project,” ACM
Transactions on Mathematical Software, vol. 31, no. 3, pp. 397–423, 2005.

[61] O. Schenk and K. Gärtner, PARDISO, pp. 1458–1464. Boston, MA: Springer US, 2011.
[62] B. Schling, The Boost C++ Libraries. XML Press, 2011.
[63] I.-L. Chern and Y.-C. Shu, “A coupling interface method for elliptic interface problems,” Journal

of Computational Physics, vol. 225, no. 2, pp. 2138–2174, 2007.
[64] C. Annavarapu, M. Hautefeuille, and J. Dolbow, “A robust Nitsche’s formulation for interface

problems,” Computer Methods in Applied Mechanics and Engineering, vol. s 225–228, pp. 44–54,
06 2012.

32


	1 Introduction
	2 The finite cell method and multi-level hp-refinement
	2.1 Ingredients of the finite cell method
	2.2 The multi-level hp-method

	3 Hierarchical multigrid for uniform and multi-level hp-grids
	3.1 The multigrid algorithm
	3.2 Multigrid for hierarchical bases
	3.3 Selection of suitable smoothing strategies
	3.3.1 Additive Schwarz smoothing
	3.3.2 The relaxation parameter 
	3.3.3 Implementational aspects


	4 Numerical examples
	4.1 Poisson problem on a square domain
	4.1.1 Convergence behavior in the mesh-fitting case
	4.1.2 Convergence behavior in immersed configurations

	4.2 Perforated linear elastic plate
	4.3 Cube with spherical cavities
	4.3.1 Loading of an aluminum rod
	4.3.2 Weak scalability: Popcorn benchmark


	5 Conclusions

