
git Workflow Notes

Scott Kruger and Michel deMessieres
2020-01-12

This is not a tutorial.
Assumes basic merge and rebase knowledge.

Brief introduction to notation

• Svn uses trunk to denote main development branch, tags to
denote released version, and branches to denote where
individual development takes place

• Git has no standard rules regarding organization (everything
is a branch!) so convention matters but is less standard
(by default, you will have a “master” branch in new git repo)

• Most development teams have some notation corresponding
to svn:

!Branch to denote main development (fast-evolving stable version)
!Branch to denote releases (slowly-evolving stable version)
!All other branches (development branches where the real action is)

Comparison of conventions
of two code teams

svn PETSc Trilinos

trunk main dev

stable release master

branches devname/dev-goal dev-goal

Example branch name: barry/fix-lapack-crash fix-lapack-crash

Notes on branch name conventions:
• For large projects, finding right branch can be hard (PETSc has ~500.

Trilinos has more repos so fewer branches, but ~100 still common.)
Some organizational structure seems useful and “devname/” is better
than nothing.

• Use of “/” works well with gui’s (discussed later)
• devname/dev-goal seems to be useful even with multiple developers

committing to a branch
• Hyphens are typically used over underscores for dev-goal

Ideal workflow has no commits other
than merges on master/maint branch

• Every possible commit is first a branch, and then a
merge back, even if you do not want to use merge
request.

• Example typo fix:
git checkout master

git pull

git checkout –b scott/fix-typo-in-readme

<edit README> # Could do this before the checkout -b

git commit –a –m’Fix typo’

git checkout master

git merge scott/fix-typo-in-readme

Ideal workflow has no commits other
than merges on master/maint branch

• Simplest workflow in graphical view
master

sam/fix-foo
bob/fix-bar

sam/new-foo

bob/new-bar

• Does not need to be single
node in each branch

• Rule of thumb for # of
nodes in dev branches:
Make reasonable log
message per file; i.e., `git
log file` should always
show relevant message

These nodes are only merges

For this simple development, git log will
show merge/dev/merge/dev/…

Making clean histories and clean trees

master

sam/fix-foo

• Sam wants to open merge request to master.
• How should she best do this?

Making clean histories and clean trees

master

sam/fix-foo

• Sam wants to open merge request to master.
• How should she best do this?

• First she should catch up to the last developments
in master to make sure there are no conflicts.

Making clean histories and clean trees

master

sam/fix-foo

• Sam wants to open merge request to master.
• How should she best do this?

git checkout master

git pull #make sure it’s the latest

git checkout sam/fix-foo

git rebase master # may require conflict resolution

• Sam wants to open merge request to master.
• How should she best do this?

• After successful rebase
• But, two of those commits are just fixes of the
prior. Need to squash

Making clean histories and clean trees

master

sam/fix-foo

• Sam wants to open merge request to master.
• How should she best do this?

git rebase –i HEAD~4

Making clean histories and clean trees

master

sam/fix-foo

-i => interactive
~4 => Last 4 from the latest commit (HEAD)

• Sam wants to open merge request to master.
• How should she best do this?

pick db986b2 Commit 1

pick 1fbcffd Commit 2

pick d7b34d0 Commit 3

pick 5d8c12a Commit 4

Making clean histories and clean trees

master

sam/fix-foo

• Sam wants to open merge request to master.
• How should she best do this?

pick db986b2 Commit 1

squash 1fbcffd Commit 2

pick d7b34d0 Commit 3

squash 5d8c12a Commit 4

Making clean histories and clean trees

master

sam/fix-foo

After editting the list, you will automatically be requested
to edit log messages

• Sam wants to open merge request to master.
• How should she best do this?

• Squash successful.
• Now need to open merge request

Making clean histories and clean trees

master

sam/fix-foo

• Sam wants to open merge request to master.
• How should she best do this?

• Push to remote: git push

• Using ‘git checkout –b’ as above means requires to set
origin name (can rename local branch from remote branch)

• It will show you command: just copy and paste
• It then will give URL for opening MR: just copy and paste

Making clean histories and clean trees

master

sam/fix-foo

• Sam wants to open merge request to master.
• How should she best do this?

• After successful MR
• Resolving MR means doing testing (CI pipeline) and that

can take time. May require new rebases.
• Don’t forget that if remote branch exists, the force pushes

are required after squashing.

Making clean histories and clean trees

master

sam/fix-foo

• GUI’s can actually be useful
!GitKraken: Commercial code that has free version

•Good for people that like GUIs

!gitk: Primitive GUI built on tk (often comes with git)
•Excellent command line options make it faster and leaner
•Still learning to use effectively

!Both can show tree structure
!When your branch shows a mess of the tree structure,
then it can be hard to untangle

!Bad branches usually result from merging instead of
rebasing (rebase master in dev branches to catch up!)

What to do when things go wrong

GitKraken is pretty

• Local branches need not match remote branch name
• Multiple local branches can point to same remote
• Rename your local branch (m = move):

!git branch –m sam/fix-foo-bad

• Cherry-pick the good stuff from bad:
git log

<copy hash of commit you want>

git checkout master

git pull #make sure it’s the latest

git checkout –b sam/fix-foo

git cherry-pick <paste hash>

git log # Check and make sure it is clean. Or use gui

git push –f # Force the update

Good way of recovering

• If other people are pushing to your branch, then beware of
`git pull`.

• Good method: Always pull while in master, and look and
see if your branch has new commits to avoid surprises.

!Can also just do fetch (pull = fetch + merge) but I tend to prefer pull
in main since I want main to be up-to-date anyway

• If your pull showed a forced push on your branch, then
saving your own local branch and checking out fresh branch
may be a good idea

• If while doing a merge (or rebase) it seems bad,
`git merge –abort`, then a branch move and cherry-pick
might be easier.

Working with other developers

• Having multiple local branches being able to point to a single remote
branch is very useful and not obvious in how it impacts workflow. It
allows you to save stuff permanently (more useful than stash IMO)

!Specifically: ‘git branch –m’ and ‘git cherry-pick’ can really save a lot of
time when things are fubar’d.

• Having multiple remotes is also useful, and critical for collaborating
with teams where you are not a member; e.g., trilinos only accepts pull
requests from forks so I need a remote from the main repo and a remote
from our fork to work effectively

• Looking at .git/config can help with the above to understand where your
local branches are pointing to.

• Picking a complicated repo and looking at tree structure using GUI is
educational.

Final thoughts with random coherency

