

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439

www.anl.gov

ANL-20/XXXX

Evaluation of PETSc on a Heterogeneous
Architecture the OLCF Summit System
Part II: Basic Communication Performance

Mathematics and Computer Science Division

ANL-20/XXXX

Evaluation of PETSc on a Heterogeneous
Architecture the OLCF Summit System
Part II: Basic Communication Performance

Prepared by
Junchao Zhang, Richard Tran Mills, and Barry Smith
Mathematics and Computer Science Division, Argonne National Laboratory

September 2020
This work was supported by the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357.

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Lemont, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free via DOE's SciTech Connect
(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the National
Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandra, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the Office of
Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

Evaluation of PETSc on a Heterogeneous Architecture

the OLCF Summit System

Part II: Basic Parallel Communication Performance

Junchao Zhang, Richard Tran Mills, Barry Smith
Mathematics and Computer Science Division

Argonne National Laboratory

Abstract1

Nearest neighbor communication is at the heart of many parallel high performance computing compu-2

tations. We report on the performance of such communication on the Oak Ridge Leadership Computing3

Facility system Summit in the context of the communication module in PETSc. The analysis in this re-4

port includes basic ping-pong style point to point communication, regular and irregular nearest neighbor5

communication.6

1 Introduction7

We report on the performance of the Portable, Extensible Toolkit for Scientific Computation (PETSc)8

[3, 4] communication infrastructure using basic ping-pong style point to point communication, regular and9

irregular nearest neighbor communication on the IBM/NVIDIA Summit computing system [2] at the Oak10

Ridge Leadership Computing Facility (OLCF). Using the organization of the PETSc library, many PETSc11

solvers and preconditioners are able to run with GPU vector and matrix implementations. This report is a12

continuation of the previous report: Part I [7] that introduces the Summit architecture and analyses the on-13

node performance characteristics. The Part III report [] continues the analysis in this report for unstructured14

mesh communication for partial differential equations. This report builds on the analysis of the previous15

report and thus will not repeat the detailed material in that report.16

The planned United States Department of Energy exascale computing systems [11] have designs similar17

to that of Summit. Thus, it is important to have a well-developed understanding of Summit in preparation18

for these systems. This document is not intended to provide a strict benchmarking of the Summit system;19

rather it is to develop an understanding of systems similar to Summit, in order to guide PETSc development.20

2 The Summit System and Experimental Setup21

Figure 1 shows the basic communication pathway of a Summit compute node. Each node has two CPU22

sockets and each socket contains one IBM POWER9 CPU, accompanied by three NVIDIA Volta V10023

GPUs. The CPU and GPUs are connected by NVIDIA’s NVLink interconnect, which has a bi-directional24

bandwidth of 50GB/s. Communication between the two CPUs are provided by IBM’s X-Bus, with a bi-25

directional bandwidth of 64GB/s. Each CPU also connects to a single Mellanox InfiniBand ConnectX-526

(EDR IB) network interface card (NIC) through a PCIe Gen4 x8 bus with a bi-directional bandwidth of27

16GB/s. The NIC has an injection bandwidth of 25GB/s.28

PETSc uses MPI for communication between processes. When data is in GPU memory, PETSc is able to29

copy the data to CPU memory and perform the communication with regular MPI on CPUs and then copy the30

data to GPUs. The preferred approach, however, is to use CUDA-aware MPI, with which PETSc can pass31

device pointers directly to MPI routines. In this report, we focus on this preferred approach as it provides32

better performance. A quality CUDA-aware MPI implementation would use NVIDIA’s GPUDirect Point-33

to-Point(P2P) and remote direct memory access (RDMA) technologies. With GPUDirect P2P, data can be34

directly copied between the memories of two GPUs within a node. With GPUDirect RMDA, GPUs can35

1

Summit Node Overview

P9 P9

DRAM
256 GBH

BM
16

 G
B

G
PU 7
TF

H
BM

16
 G

B

G
PU 7
TF

H
BM

16
 G

B

G
PU 7
TF

DRAM
256 GB H

BM
16

 G
B

G
PU 7
TF

H
BM

16
 G

B

G
PU 7
TF

H
BM

16
 G

B

G
PU 7
TF

TF 42 TF (6x7 TF)
HBM 96 GB (6x16 GB)
DRAM 512 GB (2x16x16 GB)
NET 25 GB/s (2x12.5 GB/s)
MMsg/s 83

N
IC

HBM/DRAM Bus (aggregate B/W)
NVLINK
X-Bus (SMP)
PCIe Gen4
EDR IB

HBM & DRAM speeds are aggregate (Read+Write).
All other speeds (X-Bus, NVLink, PCIe, IB) are bi-directional.

NVM
6.0 GB/s Read
2.2 GB/s Write

12
.5

 G
B/

s

12
.5

 G
B/

s
16 G

B/s 16
 G

B/
s

64
GB/s

13
5

G
B/

s

13
5

G
B/

s

50
 G

B/
s

50 GB/s

50 GB/s

50
 G

B/
s

50 GB/s

50 GB/s

50
 G

B/
s

50
 G

B/
s

50
 G

B/
s

50
 G

B/
s

90
0

 G
B/

s
90

0
 G

B/
s

90
0

 G
B/

s

90
0

 G
B/

s
90

0
 G

B/
s

90
0

 G
B/

s

17
0

G
B

/s

17
0

G
B

/s

Figure 1: Diagram of a Summit node with communication pathway [8]

communicate directly to the NIC and send or receive data without staging in CPU memory. Obviously, the36

former is useful in MPI intra-node communication and the latter is useful in MPI inter-node communication.37

The NIC that connects the node to the parallel network is connected to a programmable “local network”38

that connects it to the CPU memory as well as the GPU memory. This means the parallel communication39

latency and bandwidth (see Report I) are limited by the NIC, the local network, the NVLinks from the40

CPU to the local network and the GPUs memory, but not the CPU memory. However, CUDA-aware MPI41

calls (send, receive, and waits) must currently be called by code running on the CPU cores. There is42

ongoing research in triggering the MPI communication from within CUDA kernels to avoid the extra CPU43

to GPU operations but these are not currently available. The total communication time is a combination of44

the physical/software latencies and bandwidths of the various hardware components plus the latencies and45

bandwidths induced by the software stack.46

3 MPI Point-to-Point Latency on Summit47

In [9], the authors evaluated MPI point to point latency and bandwidth on a GPU-enabled OpenPower48

system similar to Summit, using MPI implementations including MVAPICH2-GDR, OpenMPI and IBM49

Spectrum MPI. In this section, we repeat their latency experiments on Summit. We only use Spectrum MPI50

since it is the only supported MPI on the machine; the others are difficult to install and use. Measuring MPI51

performance on Summit is not the purpose of this report. What we want to know is what communication52

performance PETSc can provide, since PETSc users and PETSc code itself usually do not directly call MPI,53

instead they do it through PETSc application programming interfaces (APIs). If an MPI implementation54

has better performance, PETSc surely can ride on that.55

We used osu latency from the OSU Microbenchmarks 5.6.2 [10], which can measure latency with CPU56

buffers or GPU buffers. We focus on the GPU case in this report. This test is also known as the MPI57

ping-poing test. Shown in Figure 2, it uses two MPI ranks and allocates a send buffer (sbuf) and a recieve58

buffer (rbuf) on each rank. The buffers are long enough (e.g., 4MB bytes). Rank 0 MPI Sends a message59

of a certain size from its send buffer to rank 1’s receive buffer. Once rank 1 MPI Recvs the message, rank60

2

MPI_Send(sbuf)

MPI_Recv(rbuf)

MPI_Send(sbuf)

MPI_Recv(rbuf)

△t= 2 * latency

time rank 0 rank 1

MPI_Send(sbuf)

Figure 2: OSU Microbenchmarks latency test [10]

1 replies a message of the same size from its send buffer to rank 0’s receive buffer. After rank 0 gets the61

reply, it finishes a round-trip from rank 0 to rank 1. The round-trip is repeated many times (10,000 times62

for messages ≤ 8KB and 1,000 times otherwise). The latency is calculated as the average time of a one-way63

trip. Looking at Figure 2, one might find rank 1 does not reply with the message it got from rank 0 (i.e.,64

what in its rbuf). Instead, it sends data in its sbuf. This design is used to minimize cache effect, though65

that is not very important on GPUs as we later found. The microbenchmark uses MPI Wtime for timing and66

assumes send buffers are ready for MPI, so there are no any kind of CUDA synchronizations involved.67

We placed the two MPI ranks on the same GPU, on two GPUs attached to the same CPU, on two GPUs68

attached to different CPUs within a node, and on two GPUs across nodes and got latency results for them69

in Table 1, which we call intra-GPU, intra-socket, inter-socket and inter-node latency respectively. Though70

the microbenchmark can test message sizes starting from 0, we omitted results for messages smaller than 871

bytes for brevity. The intra-GPU results are better than those reported in Figure 6 of [9]. The remaining72

results largely match with those in Figures 4, 10, 12 of [9]. We can regard these performance numbers as an73

upper bound that a similar PETSc benchmark could achieve.74

For a message of size s, its MPI ping-pong latency l can be modeled as l = α+βs, where α is the start-up75

cost and β is reciprocal of the MPI send/recv bandwidth. Taking latency at 8 bytes as α, and applying the76

formula to messages at size 4MB, we can then get the bandwidth. The intra-GPU, intra-socket, inter-socket77

and inter-node MPI send/recv bandwidths are 364.7GB/s, 47.2GB/s, 34.5GB/s and 9.7GB/s respectively.78

The intra-GPU bandwidth reaches 81.0% of half of the GPU memory bandwidth at 900GB/s (note we both79

read and write the same GPU memory in this case). The intra-socket, inter-socket bandwidths reach 94.5%,80

69.0% of the NVLink bandwidth at 50GB/s respectively, while the inter-node one only reaches 38.8% of the81

EDR IB bandwidth at 25GB/s. Since GPU virtualization on Summit comes with some cost, up to 20%, it is82

highly recommended that one uses one MPI rank per physical GPU. In the following studies in this report83

we follow this convention.84

3

leaves

root

leaves

root

leaves

root

Figure 3: A star-forest example

Message
size (bytes)

Latency (µs)
Intra-GPU Intra-socket Inter-socket Inter-node

8 20.1 17.8 19.3 6.0
16 20.1 17.8 19.4 6.0
32 20.1 17.8 19.4 6.8
64 20.1 17.8 19.5 6.0

128 20.1 17.8 19.5 6.1
256 20.1 17.8 19.4 6.2
512 20.1 17.8 19.5 6.2
1K 20.1 17.8 19.4 6.3
2K 20.0 17.8 19.4 6.8
4K 20.1 17.8 19.4 7.2
8K 20.1 17.8 19.5 8.2

16K 20.1 17.8 19.5 9.3
32K 20.0 17.8 19.4 11.4
64K 20.1 18.5 20.1 14.1

128K 20.1 20.0 21.6 19.9
256K 20.1 22.6 24.6 30.5
512K 20.4 28.2 30.9 51.8

1M 20.7 39.4 43.2 98.2
2M 25.6 61.7 68.2 191.2
4M 31.6 106.6 140.9 436.7

Table 1: MPI ping-pong latency1 measured by osu latency from the OSU Microbenchmarks [10]

4 The Communication Module in PETSc85

4.1 Introduction86

PetscSF is PETSc’s communication module. It is heavily used by other PETSc modules internally. Appli-87

cations can also call it directly. VecScatter, a public interface for communications on PETSc vectors, is also88

implemented in PetscSF. PetscSF abstracts nearest neighbor communications into a star-forest (SF) graph.89

An SF is a forest containing multiple star-shaped trees, where each tree has a height of one, with one root90

and multiple leaves. See Figure 3 for an example.91

To build a PetscSF, users need to provide on each MPI processes two integer-indexed spaces: the leaf92

space and the root space. Leaves in the leaf space can be dense (i.e., contiguous) or sparse, and must be93

local to the process such that an integer can identify a leaf. Roots must be dense. Roots might be remote,94

in that case one uses (rank, index) pairs to specify roots the local leaves connect to, where rank is the MPI95

rank a root resides in, and index is the local index of the root on that MPI rank.96

1It’s worth noting we observed big variations in the inter-node big messages tests (e.g., 4MB), which could be 20% higher
than what reported here. We thought that was due to location of the two nodes allocated by the job system.

4

PetscSF provides split-phase communication routines to communicate between roots and leaves of an97

SF. For example, PetscSFReduceBegin/End reduces leaves to their connected roots with a given MPI re-98

duction operation. PetscSFBcastBegin/End broadcasts roots to their connected leaves. Users are expected99

to put computation in between PetscSFXxxBegin/End so that communication and computation could be100

overlapped. In addition, one can interleave communications on the same SF with different leaf data or root101

data.102

4.2 PetscSF Implementation103

On each MPI process, PetscSF internally computes the process’s neighbors (a list of destination ranks and104

source ranks) with which the process will communicate, i.e., send data to or receive data from. For each105

destination, it computes indices of local data (leaves or roots depending on the context) which it needs to106

send. For each source, it computes indices of local data where it should deposit the received data. When a107

neighbor is the process itself, we call the communication self or local communication; Otherwise we call it108

remote communication. We separate local and remote communications since for the local one we can bypass109

MPI and enjoy unique optimization opportunities.110

For remote communication, PetscSF in general allocates on each MPI process a send buffer and a receive111

buffer. Let’s use PetscSFReduceBegin(sf,unit,leafdata,rootdata,op) as an example. A process packs112

selected entries of leafdata into the send buffer and then sends them out. After it receives data it needs113

in the receive buffer, it unpacks entries from the buffer and deposits them back to rootdata. Each remote114

neighbor takes its own chunk from the send or receive buffer. PetscSF’s pack/unpack routines are overloaded115

according to location of the root/leafdata. When data is in CPU memory, the routines are CPU functions;116

when data is in GPU memory, the routines are CUDA kernels, where each CUDA thread works on a leaf/root.117

PetscSF will use atomic instructions in unpack CUDA kernels when there are data race chances.118

PetscSF employs index analysis to set up optimizations to lower packing cost. The analysis is done in119

PetscSF setup phase, with a low cost that could also be amortized by multiple calls to PetscSF. For instance,120

in PetscSFReduce, when leaf indices used in packing happen to be contiguous, PetscSF disguises leafdata as121

the send buffer and completely avoids packing. Still with PetscSFReduce, when root indices for unpacking122

are contiguous, can it disguise rootdata as the receive buffer and avoid unpacking? That depends on the123

reduction argument op. If op is MPI REPLACE (similar to INSERT VALUES in VecScatter), it can; Otherwise,124

it can’t and has to allocate a receive buffer and launches an unpack kernel performing the reduction such125

as MPI SUM. Even in this case, it takes advantage of the fact that root indices are contiguous. It avoids126

copying root indices to GPUs and uses simpler expressions in the unpack kernel. Note that PetscSF employs127

persistent MPI Isend/Irecv for communication. With this data and buffer disguising, that means in an SF’s128

lifetime it may encounter different send/receive buffers. PetscSF handles this complexity and makes them129

work with MPI persistent requests. PetscSF does buffer allocation and MPI persistent request initialization130

on-demand, in the sense that it only uses resources when needed.131

For local communication, PetscSF abstracts it as a scatter operation: x[idx[i]] → y[idy[i]], for i ∈132

[0, n). The scatter is a GPU kernel when data is on GPU. It uses simpler expressions like x[startx+i] →133

y[idy[i]] when it knows indices in idx[] are contiguous and startx is the first. There are other variants,134

such as the scatter is simply a memory copy, or even a no-op when it finds out it is a memory copy with the135

destination and the source having the same address. PetscSF exploits these opportunities to simplify local136

communication.137

In PetscSFXxxBegin(), it first checks memory types of the input rootdata and leafdata, to know whether138

they point to CPU or GPU memory. It needs this info to set up data structures such as pack routines. Then139

it posts MPI Irecv requests through MPI Startall, calls a pack routine to pack source data into the send140

buffer, and posts MPI Isend requests. After that, it calls a scatter routine to do local communication. In141

PetscSFXxxEnd(), it waits for the requests it has posted with MPI Waitall. At the end, it calls an unpack142

routine to unpack data from the receive buffer. The pack/unpack is skipped sometimes as discussed above.143

Although PetscSF is able to communicate data on GPUs without GPU-aware MPI support, we focus144

exclusively in this report on code path using GPU-aware MPI since it avoids back-and-forth buffer copying145

between CPUs and GPUs and has superior performance.146

CUDA kernels are executed asynchronously with respect to CPUs. When a PetscSF routine is called,147

the leaf/root data might be being computed by some CUDA kernels on CUDA streams which are un-148

known to PetscSF, therefore in theory PetscSF has to call cudaDeviceSynchronize() to wait for the149

data to be ready. PetscSF could launch pack/unpack kernels on its own stream. On the sender side,150

5

Sender
(leafdata can be computed

on any stream)

cudaDeviceSynchronize()

Pack<<<...,s1>>>
(leafdata,...,sbuf)

cudaStreamSynchronize(s1)

MPI_Isend(sbuf,...) MPI_Irecv(rbuf,...)

MPI_Waitall()

Unpack<<<...,s2>>>
(rootdata,...,rbuf)

cudaStreamSynchronize(s2)

Sender
(leafdata is being computed

on s1)

Pack<<<...,s1>>>
(leafdata,...,sbuf)

cudaStreamSynchronize(s1)

MPI_Isend(sbuf,...) MPI_Irecv(rbuf,...)

MPI_Waitall()

Unpack<<<...,s2>>>
(rootdata,...,rbuf)

Receiver
(rootdata is being consumed

on s2)

Receiver
(rootdata can be computed

on any stream)

Sender
(leafdata is being computed

on s1)

Pack<<<...,s1>>>
(leafdata,...,sbuf)

MPI_Isend(sbuf,...s1) MPI_Irecv(rbuf,...,s2)

MPI_Waitall()

Unpack<<<...,s2>>>
(rootdata,...,rbuf)

Receiver
(rootdata is being computed

on s2)

(a) Most general synchronization model (b) Synchronization model if PetscSF knows
where leaf/root data is computed

(c) Synchronization model improved from (b), if in
addition we can make MPI work on given streams

PetscSFReduceBegin/End(sf,unit,leafdata,rootdata,op)

Figure 4: Different synchronization models in PetscSF

PetscSF calls cudaStreamSynchronize() on the stream before MPI Isend. On the receiver side, after151

MPI Waitall, PetscSF is assured that data is received. It launches an unpack kernel and then calls152

cudaStreamSynchronize() again to assure the data is ready for PetscSF clients (either applications or153

other modules of PETSc). This procedure is demonstrated in Figure 4(a) using PetscSFReduce as an exam-154

ple. One can see that there are many synchronizations involved. If PetscSF could know the streams where155

leaf/rootdata is produced or consumed, it could save the synchronizations before Pack and after Unpack as156

shown in Figure 4(b). Further, if MPI routines are CUDA-stream aware, e.g., by taking a stream argu-157

ment or other means, and work more like a kernel launch, we then could remove the synchronization before158

MPI Isend as shown in Figure 4(c). This requires support from MPI that is currently not available. One159

can refer to the MPI and CUDA semantic mismatch discussion in [6].160

Model (a) is the most general model. Since PETSc currently only uses the CUDA default stream, we161

provide an option -sf use default stream to let PetscSF skip the cudaDeviceSynchronize() before Pack162

and the cudaStreamSynchronize() after Unpack. This option turns Model (a) into Model (b) in Figure 4163

(with s1 = s2 = NULL). For experiments, we also provide an option -sf use stream aware mpi pretending164

the underlying MPI knows where the send/receive data is being produced/consumed, so that it can get rid165

of the cudaStreamSynchronize() after Pack and turns Model (b) into Model (c).166

5 Experimental Results167

5.1 PetscSF without pack/unpack168

We wrote a ping-pong test using PetscSF, which had the same parameters as those in the OSU ping-pong169

test used in Section 3. Suppose we want to measure latency for a message of size 8n. We build an SF in which170

rank 0 has n roots and zero leaves, while rank 1 has 0 roots and n leaves, as shown in Figure 5. Rank 1’s171

leaves are one-on-one sequentially connected to rank 0’s roots. With this SF, PetscSFBcast will be a send172

from rank 0 to rank 1, while PetscSFReduce will be a send from rank 1 to rank 0. We used double-precision173

and PETSc’s MPIU SCALAR (same as MPI DOUBLE) as the MPI datatype for roots and leaves. In other words,174

a root or leaf is eight bytes. We built different SFs for different message sizes. The following loop shows a175

ping-pong test for a given message size. Note that sbuf and rbuf in the code work as a pair of rootdata on176

rank 0, and as a pair of leafdata on rank 1, which is intended to mimic the behavior in the OSU test.177

178

Since in this test root/leaf indices are contiguous and we do not actually do reduction on roots, PetscSF179

has optimizations that directly use sbuf or rbuf as MPI’s send/receive buffers and avoid packing/un-180

packing kernels. In other words, we get a simplified code path like the one in Figure 6(a). To get181

rid of the cudaDeviceSynchronize() before MPI Isend, we use option -sf use default stream indicat-182

ing root/leaf data is good to use on the default stream, and get the code path in Figure 6(b). The183

6

0 1 ... n-1

0 1 ... n-1

roots

leaves

rank 0 rank 1

...

0 1 ... n-1

leaves

0 1 ... n-1

0 1 ... n-1

roots

leaves

rank 0 rank 1

...

Figure 5: Star-forests in the PetscSF Ping-pong/Unpack tests (left), and in the PetscSF Scatter test (right)

for (i=0; i<niter; i++) {

ierr = PetscSFBcastBegin(sf,MPIU_SCALAR ,sbuf ,rbuf);CHKERRQ(ierr);

ierr = PetscSFBcastEnd(sf,MPIU_SCALAR ,sbuf ,rbuf);CHKERRQ(ierr);

ierr = PetscSFReduceBegin(sf ,MPIU_SCALAR ,sbuf ,rbuf ,MPIU_REPLACE);CHKERRQ(ierr);

ierr = PetscSFReduceEnd(sf,MPIU_SCALAR ,sbuf ,rbuf ,MPIU_REPLACE);CHKERRQ(ierr);

}

Listing 1: sf pingpong benchmark loop

cudaStreamSynchronize(NULL) is there because the condition that leaf data is on the default stream does184

not necessarily mean it is ready for MPI to send. To get rid of it, we use option -sf use stream aware mpi185

indicating MPI knows which streams to get input data or put output data. Though IBM Spectrum can not186

do that, it does not matter in this simple test since the input data is always ready and we do not use the187

output data. This gives us the code path in Figure 6(c).188

We measured intra-socket GPU to GPU latency for the three variants. The results are show in columns189

Opt-A/B/C respectively. Comparing intra-socket columns Opt-A and Opt-B, we can see cudaDeviceSynchronize()190

has a slightly higher cost (about 1.5µs) than cudaStreamSynchronize(). Comparing intra-socket columns191

Opt-B and Opt-C, we know cost of a cudaStreamSynchronize() call is about 4µs, since Opt-C does not have192

synchronizations at all. We profiled the code with Opt-C and found a notable routine was a CUDA driver call193

cuPointerGetAttribute(), which was called twice in PetscSFXxxBegin() to test pointer attributes of the194

arguments rootdata and leafdata. Since we knew in this test they were GPU pointers, we manually modified195

PetscSF code and bypassed the CUDA driver call. The results are in column Opt-D. Comparing it with the196

intra-socket column in Table 1, we can see the minimal overhead of PetcSF is around 1µs over pure MPI,197

which is quite satisfying. Overall, PetscSF ping-pong latency is about 6µs longer than pure MPI. For com-198

pleteness, Table 2 also shows inter-socket and inter-node latency with Opt-B, which is PETSc’s default model199

and we will use it for remaining tests in this report. Comparing the most general synchronization model in200

Figure 4(a) and PETSc’s default model in Figure 4(b), the former has one cudaDeviceSynchronize() and201

one cudaStreamSynchronize(), whose cost is about 9µs in total, based on above analysis.202

7

Rank 1
(sbuf can be computed on

any stream)

cudaDeviceSynchronize()

MPI_Isend(sbuf,...) MPI_Irecv(rbuf,...)

MPI_Waitall()

Rank 1
(sbuf is being computed on

stream 0)

Rank 0
(rbuf is being consumed on

stream 0)

Rank 0
(rbuf can be computed on

any stream)

Rank 1
(sbuf is being computed on

stream 0)

Rank 0
(rbuf is being computed on

stream 0)

(a) Synchronization model with Opt-A (b) Synchronization model with Opt-B (c) Synchronization model with Opt-C

PetscSFReduceBegin/End(sf,MPIU_SCALAR,sbuf,rbuf,MPI_REPLACE)

cudaStreamSynchronize()

MPI_Isend(sbuf,...) MPI_Irecv(rbuf,...)

MPI_Waitall()

MPI_Isend(sbuf,...) MPI_Irecv(rbuf,...)

MPI_Waitall()

Figure 6: Code paths in the sf pingpong test with different synchronization models

Message
size (bytes)

Intra-socket latency (µs) Latency (µs) with Opt-B
Opt-A Opt-B Opt-C Opt-D Inter-socket Inter-node

8 25.3 23.8 19.9 19.0 25.4 12.0
16 25.2 23.7 19.7 19.0 25.4 11.6
32 25.2 23.6 19.7 18.9 25.3 11.6
64 25.2 23.7 19.7 19.0 25.3 11.6

128 25.2 23.6 19.8 19.0 25.3 11.9
256 25.2 23.6 19.8 19.0 25.4 11.8
512 25.2 23.6 19.8 19.0 25.3 11.8
1K 25.2 23.5 19.8 19.0 25.3 11.9
2K 25.2 23.6 19.8 19.0 25.3 12.5
4K 25.1 23.6 19.8 19.0 25.3 12.9
8K 25.0 23.5 19.6 18.9 25.3 13.9

16K 25.3 23.5 19.8 18.9 25.3 15.1
32K 25.3 23.5 19.8 19.0 25.4 17.2
64K 25.7 24.3 20.5 19.7 25.9 19.8

128K 27.3 25.5 21.7 20.9 27.5 25.7
256K 30.0 28.3 24.5 23.6 30.5 36.2
512K 35.5 34.0 30.1 29.3 36.8 58.8

1M 46.8 45.1 41.3 40.5 49.2 104.3
2M 68.9 67.3 63.6 62.8 74.3 197.0
4M 113.9 112.5 108.6 107.9 147.2 441.2

Table 2: sf pingpong latency. Options used: Opt-A = -use gpu aware mpi; Opt-B = Opt-A +
-sf use default stream; Opt-C = Opt-B + -sf use stream aware mpi; Opt-D = Opt-C + manually
set types of root/leafdata as GPU pointers. PETSc’s default is Opt-B.

5.2 PetscSF with unpack and local communication203

We now turn to unpack kernels and local communications. We slightly modified the sf pingpong test and204

created a new test called sf unpack. For easy understanding, in sf unpack we used only one set of root data205

on rank 0 and one set of leaf data on rank 1. We added roots to leaves with PetscSFBcastAndOp and leaves206

to roots with PetscSFReduce using code in Listing 2. Because of MPI SUM, we need a receive buffer at the207

destination and an unpack kernel performing the addition. With PETSc’s default option, we got a code208

path shown in Figure 7. Comparing it with Figure 6(b), we paid an extra cost for calling Unpack, including209

kernel launch time and kerenl execution time.210

211

To add local communication, we created another test called sf scatter by simply changing the SFs used212

in sf unpack. We added leaves on rank 0 and made them connected to its roots one-on-one. An example SF213

is shown in the left of Figure 7. With the new SFs and the same code in Listing 2, PetscSFBcastAndOp will214

add roots on rank 0 to both local and remote leaves; and PetscSFReduce will add both local and remote215

leaves to roots. The code path for PetscSFReduce is shown in the right of Figure 7. On rank 0, the local216

8

for (i=0; i<niter; i++) {

ierr = PetscSFBcastAndOpBegin(sf ,MPIU_SCALAR ,rootdata ,leafdata ,MPI_SUM);CHKERRQ(ierr);

ierr = PetscSFBcastAndOpEnd(sf,MPIU_SCALAR ,rootdata ,leafdata ,MPI_SUM);CHKERRQ(ierr);

ierr = PetscSFReduceBegin(sf ,MPIU_SCALAR ,leafdata ,rootdata ,MPI_SUM);CHKERRQ(ierr);

ierr = PetscSFReduceEnd(sf,MPIU_SCALAR ,leafdata ,rootdata ,MPI_SUM);CHKERRQ(ierr);

}

Listing 2: sf unpack benchmark loop

rank 1
(leafdata is produced on

stream 0)

rank 0
(rootdata is consumed on

stream 0)

cudaStreamSynchronize()

MPI_Isend(leafdata,...) MPI_Irecv(rbuf,...)

MPI_Waitall()

Unpack<<<...>>>
(rootdata,...,rbuf)

Scatter<<<...>>>
(leafdata,rootdata,...)

rank 1
(leafdata is produced on

stream 0)

rank 0
(rootdata is consumed on

stream 0)

PetscSFReduceBegin/End(sf,MPIU_SCALAR,leafdata,rootdata,MPI_SUM)

cudaStreamSynchronize()

MPI_Isend(leafdata,...) MPI_Irecv(rbuf,...)

MPI_Waitall()

Unpack<<<...>>>
(rootdata,...,rbuf)

Figure 7: Code paths of PetscSFReduce in tests sf unpack (left) and sf scatter (right)

communication is done through the Scatter kernel, which directly works on rootdata and leafdata. The217

remote communcation is done through the Unpack kernel, which works on rootdata and the receive buffer218

rbuf. The two kernels are executed in the default stream one after another so we are not concerned with219

data-race in reduction. Also note that Scatter is called between MPI Irecv and MPI Waitall, so that local220

communication could be overlapped with remote communication.221

For fair comparision, we modified sf pingpong to let it use one set of root/leaf data (the code is equal to222

replacing MPI SUM in Listing 2 with MPI REPLACE) and called it sf newpingpong. We tested sf newpingpong,223

sf unpack and sf scatter and have their results in Table 3. We have these observations:224

1. Comparing the results of sf pingpoing in Table 2 (columns labeled with Opt-B) and the results of225

sf newpingpong in Table 3, we can see they are very close except for the inter-socket and inter-node226

tests with large messages. For example, in the inter-node 4MB message size tests, sf newpingpong227

is about 13% faster than sf pingpoing. This implies caching did take a role in these cases. Further228

investigation is out of scope of this report.229

2. In these tests roots and leaves are dense such that the Unpack and Scatter kernels are basically a230

vector addition. Using the GPU memory bandwidth 900GB/s given in Figure 1, a rough estimation of231

kernels Unpack and Scatter’s execution time with 4MB messages size is 4MB*2÷900GB/s = 9.3µs,232

including both read and write. Let’s denote sf newpingpong’s latency as l, and kernel launch time233

and execution time for kernel K as Tl(K) and Te(K) respectively. Then sf unpack’s latency lunpack =234

l+Tl(Unpack)+Te(Unpack). If we deem Te(Unpack) = 0 at 8 bytes (i.e, one double), then we can easily235

get kernel launch time Tl(Unpack) = lunpack − l = 12µs. Since Te(Scatter) < l in all cases of Table236

3, local communication should be fully overlapped with remote communication, such that sf scatter’s237

latency lscatter = lunpack = l + Tl(Unpack) + Te(Unpack). We can clearly observe lscatter = lunpack238

for messages from 8B to 2MB. Data for message size 4MB is an outlier. We guess that is because the239

local communication (i.e., the Scatter kernel) and the remote communication interfere at the memory240

system, which makes lscatter longer than lunpack. Figure 8 shows the timeline of sf scatter on rank241

0 with message size 4MB using the Nvidia profiling tool nvprof. We can clearly see execution of the242

9

* Start of PetscSFBcastAndOpBegin()
* Launch Scatter<<<...>>>

* Execute Scatter<<<...>>>
* Overlap with MPI

* Start of PetscSFReduceBegin()
* Launch Scatter<<<...>>>

* Execute Scatter<<<...>>>
* Overlap with MPI

* End of PetscSFReduceEnd()
* Launch Unpack<<<...>>>

*Execute Unpack<<<...>>>

Figure 8: Timeline of one iteration of sf scatter on rank 0 with 4MB messages. Local communication (i.e.,
the Scatter kernel3) is fully hidden by remote communication (i.e., MPI Waitall).

Scatter kernel is overlapped with MPI communication.243

Message
size (bytes)

Intra-socket(µs) Inter-socket(µs) Inter-node(µs)
newpingpong unpack scatter newpingpong unpack scatter newpingpong unpack scatter

8 24.3 35.9 35.8 25.4 37.6 37.8 12.2 22.9 23.0
16 24.2 35.7 35.6 25.5 37.5 37.6 11.5 22.6 22.6
32 24.1 35.8 35.8 25.4 37.5 37.8 11.6 22.6 22.8
64 24.2 35.8 35.8 25.4 37.6 37.8 11.6 22.6 22.6

128 24.1 35.7 35.6 25.4 37.5 37.6 11.7 22.8 22.6
256 24.2 35.8 35.8 25.5 37.6 37.8 11.7 22.7 22.7
512 24.2 35.7 35.8 25.4 37.6 37.9 11.8 22.8 23.2
1K 24.2 35.7 35.6 25.4 37.6 37.7 11.9 23.0 22.9
2K 24.2 35.6 35.8 25.4 37.6 37.8 12.5 23.3 23.5
4K 24.1 35.7 35.8 25.4 37.6 37.7 12.9 24.0 23.9
8K 24.0 35.7 35.6 25.6 37.6 37.6 13.8 24.7 25.0

16K 24.0 35.7 35.8 25.6 37.6 37.8 15.0 25.9 25.9
32K 24.1 35.7 35.7 25.7 37.6 37.5 17.2 28.1 28.1
64K 24.7 36.3 36.2 26.3 37.9 38.1 19.8 31.1 31.1

128K 25.9 37.4 37.4 27.7 39.5 39.7 25.5 36.8 36.9
256K 28.5 40.3 40.4 30.7 42.7 42.9 36.2 47.5 47.5
512K 34.2 46.7 46.7 36.9 49.8 49.7 57.5 69.6 69.3

1M 45.3 58.0 58.1 49.3 62.4 62.5 106.5 115.9 115.9
2M 67.6 81.2 81.2 74.0 88.0 88.0 197.5 210.7 210.9
4M 112.2 138.8 140.5 123.5 153.4 160.8 382.7 415.7 427.1

Table 3: One-way latency for the three tests: sf newpingpong, sf unpack and sf scatter

3The actual kernel names are d ScatterAndXxx, d UnpackAndXxx as shown by nvprof. For bravity, we just call them Scatter

10

rank 4 rank 4

rank 0 rank 1

DMGlobalToLocal

n

n
n+2

n+2

DMLocalToGlobal
x

y

index = n+3

Figure 9: A DM created by DMDACreate2d on nine processors (left) and a local vector on rank 4 (right).
Shadowed areas are ghost points.

5.3 PetscSF in regular neighborhood communication244

In this section we evaluate PetscSF with a five-point stencil code featuring regular neighborhood commu-245

nication. We leverage PETSc’s DMDACreate2d to construct a two-dimensional grid (DM), and then do246

communication between global vectors and local vectors created with this DM. To be simple, the code247

creating the DM and the vectors is like this:248

249

bt = DM_BOUNDARY_PERIODIC;250

ierr = DMDACreate2d(comm ,bt,bt,DMDA_STENCIL_STAR ,3*n,3*n,3,3,1,1,0,0,&da);CHKERRQ(ierr);251

ierr = DMCreateGlobalVector(da ,&g);CHKERRQ(ierr);252

ierr = DMCreateLocalVector(da ,&l);CHKERRQ(ierr);253

Here, we create a 3×3 processor grid, set stencil type to DMDA STENCIL STAR, stencil width to 1, boundary254

type to DM BOUNDARY PERIODIC and let every process have a square subgrid of size n×n. The DM is shown255

in the left of Figure 9. With this setting, each MPI rank will have four neighbors and communicate with256

them with the same amount of data.257

In PETSc, global vectors on this grid have a local size of n2 and elements of the vectors are consecutively258

stored on each process. Local vectors have a size of (n + 2)2, including a halo region. DMGlobalToLocal,259

internally implemented by PetscSFBcast, copies local part of a global vector to the interior part of a local260

vector on each rank, and also copies ghost points received from neighbors to the halo region of the local261

vector, shown in the right of Figure 9. In each MPI rank’s view, copying the interior region is the local262

communication, and send/receiving ghost points is the remote communication. Each process has to pack263

four faces of its subgrid into a send buffer and send out to its four neighbors, and finally unpack ghost points264

from its receive buffer. To copy local vectors to global vectors, one uses DMLocalToGlobal, which simply265

reverses the process above and is implemented by PetscSFReduce.266

We can easily see local indices of global vectors are contiguously running from 0 to n2 − 1. However,267

indices of ghost points as a whole, or indices of points in the interior region of a local vector, are not268

contiguous. Since no hints are given to PetscSF that these indices are incidental to a regular 2D grid, a269

naive implementation would copy the indices to GPU and resort to indirections like buf[i] = x[idx[i]]270

to do the copying. Instead, our optimized PetscSF uses index analysis to see if indices associated with a271

destination rank can be arranged in a 3D subgrid. Suppose we have a 3D gird of size [X,Y,Z] with nodes272

sequentially numbered in the x, y, z order, and within it there is a subgrid of size [dx,dy,dz] with index273

of the first node being start. Then indices of the subgrid can be enumerated with start+X*Y*k+X*j+i, for274

(i,j,k) in (0≤i<dx,0≤j<dy,0≤k<dz). By this token, the interior region of a local vector on this DM can275

be described as a subgrid of size [n,n,1] in a grid of size [n+2,n+2,1] with a start index n+3. Each face276

of the halo region can also be described similarily. With this abstraction, we only need to copy these grid277

parameters to GPU and then be able to easily calculate indices there.278

or Unpack in this report.

11

for (i=0; i<niter; i++) {

ierr = DMGlobalToLocalBegin(da,g,INSERT_VALUES ,l);CHKERRQ(ierr);

ierr = DMGlobalToLocalEnd(da ,g,INSERT_VALUES ,l);CHKERRQ(ierr);

ierr = DMLocalToGlobalBegin(da,l,ADD_VALUES ,g);CHKERRQ(ierr);

ierr = DMLocalToGlobalEnd(da ,l,ADD_VALUES ,g);CHKERRQ(ierr);

}

Listing 3: sf dmda benchmark loop

Since indices of ghost points are not contiguous, PetscSF has to allocate separate send/recv buffers and279

call pack/unpack kernels, rendering a code path very similar to Figure 4(b), except in the current case280

a Scatter kernel is launched after MPI Irecv() to do local communication. We perform back-and-forth281

communication between a global vector and a local vector using code in Listing 3.282

Note that in DMLocalToGlobal we use ADD VALUES instead of INSERT VALUES since points along subgrid283

boundaries are reduced with ghost points received from their neighbors. Using ADD VALUES makes more284

sense here. The consequence is PetscSF has to handle the potential data races in the Unpack kernel. We285

tested the code on Summit with two configurations. One had nine compute nodes and one MPI rank per286

node. Since there was only inter-node communication, ideally all ranks should run uniformly. The other287

had three compute nodes and three MPI ranks per node. MPI ranks were distributed in a packed manner288

such that ranks 0, 1, 2 were on node 0, ranks 3, 4, 5 were on node 1, and so on so forth. Even more, we289

placed each group of three ranks on one socket of a node. Looking at Figure 9, we know that every rank290

did intra-socket communication with its eastern/western neighbors, and did inter-node communication with291

its southern/northern neighbors. However, all ranks had even work and communication. Similar to the292

ping-pong test, we measured average one-way latency of the communication, which is shown in Table 4.293

n
Message
size (bytes)

Latency(µs)
Nine nodes Three nodes

4 32 45.6 75.7
8 64 44.8 75.6

16 128 45.5 75.7
32 256 45.5 75.8
64 512 45.0 75.8

128 1K 46.0 75.9
256 2K 46.3 75.9
512 4K 47.1 76.0

1024 8K 57.1 83.0
2048 16K 139.9 139.0
4096 32K 499.9 498.3

Table 4: One-way latency for the sf dmda test, where n is the subgrid size, and message size = 8n, which is
the size of messages between two neighbors.

We can see from the table for small messages (n ≤ 512) the latency is almost the same, which indicates294

MPI latency and cuda runtime overhead dominate. Since intra-socket ping-pong latency is longer than the295

inter-node one, the three-node configuration has longer latency than the nine-node configuration. Figure 10296

shows profiling result one rank 0 with the nine-node configuration. We can see MPI communication time297

is longer than the Scatter kernel execution time, and the Pack/Unpack kernel launch time is prominent. In298

contrast, with bigger n, kernel Scatter’s execution time, which is proportional to n2, out-weights all others299

such that three nodes have same execution time as nine nodes. We can easily see it from profiling result300

with n=4096 in Figure 11.301

5.4 PetscSF in irregular neighborhood communication302

We now turn attention to irregular communications. To study this problem, we use PETSc’s sparse matrix-303

vector multiplication (SpMV) routine MatMult(mat,x,y), which calculates y=mat*x. In PETSc, mat is304

distributed by row and vectors x and y are also distributed accordingly. On each process, the local matrix305

12

* Start of DMGlobalToLocalBegin()
* Launch Pack<<<...>>>

Execute

* Start of local communication
* Launch Scatter<<<...>>>* cudaStreamSynchronize()

Execute Scatter;
Overlap with MPI

* Launch Unpack<<<...>>>

Execute

* Start of DMLocalToGlobalBegin()
* Launch Pack<<<...>>>

Execute

* End of DMLocalToGlobalEnd()

Execute
Execute;
Overlap with MPI

Figure 10: Timeline of one iteration of sf dmda on rank 0 with nine nodes and n=128

for (i=0; i<niter; i++) {

ierr = VecScatterBegin(Mvctx ,x,lvec ,INSERT_VALUES ,SCATTER_FORWARD);CHKERRQ(ierr);

ierr = MatMult(A,x,y);CHKERRQ(ierr); /* overlapped computation : y = Ax */

ierr = VecScatterEnd(Mvctx ,x,lvec ,INSERT_VALUES ,SCATTER_FORWARD);CHKERRQ(ierr);

ierr = MatMultAdd(B,lvec ,y,y);CHKERRQ(ierr); /* y += B*lvec */

}

Listing 4: MatMult benchmark loop

is split into a diagonal submatrix A and an off-diagonal submatrix B. Multiplication Ax only needs to access306

local entries of x and does not need communication, while multiplication Bx needs to access remote entries of307

x and requires communication. The communication is done by VecScatter, implemented in PetscSFBcast. In308

MatMult implementation, PETSc allocates a local vector lvec working as SF leaves on each process to store309

remote entries of x. Without going to too many details, we have these statements: 1) The leaves are con-310

tiguous such that PetscSF can directly use leafdata (i.e., data array of lvec) as leaf buffer in PetscSFBcast,311

without resorting to an unpack kernel; 2) Since the matrix is sparse, each rank only needs to send out312

some entries of vector x (i.e., the roots). Therefore roots are generaly not contiguous and we need a pack313

kernel; 3) There is no local communication; 4) The local computation, i.e., Ax, could be overlapped with the314

communication. With that, we have this classical MatMult(mat,x,y) implementation in PETSc, shown as315

the loop body in Listing 4, whose diagram is shown in Figure 12(a).316

317

Looking at Figure 12(a), we can see the cudsStreamSynchronize() in VecScatterBegin() is only to318

ensure sbuf, the output of kernel Pack, is ready for use in MPI Isend(). However, it accidently blocks launch319

of y = Ax, which is done through a cuSPARSE kernel. In other words, the launch cost of y = Ax could not320

be hidden. A remedy is to use CUDA events and re-arrange VecScatterBegin/End() as shown in Figure321

12(b). There we record a CUDA event right after Pack and move MPI Isend() from VecScatterBegin() to322

VecScatterEnd(). The event is synchronized before MPI Isend() so that MPI won’t send out wrong data.323

Note that the B*lvec in Figure 12(b) only depends on the communication results and does not depend on324

y = Ax. However the algorithm forces y += B*lvec to be executed after y = Ax. We can decouple this325

dependancy with help of a temporary vector z. In Figure 12(c), We launch z = B*lvec on a new stream s,326

and then launch kernel y += z on the default stream to add the partial result to y. We use CUDA events to327

build the dependency between the two kernels on different streams. As long as the communication finishes328

before kernel y = Ax, kernel z = B*lvec has the potential to run concurrently with y = Ax. Since y = Ax329

13

* Start of local communication
* Launch Scatter<<<...>>>

Execute Scatter;
Overlap with MPI

Figure 11: Timeline of one iteration of sf dmda on rank 0 with n=4096

and y += z are both lanuched on the default stream, their dependency is automatically maintained. Note330

both Figure 12(b) and (c) assume the computation sandwiched between VecScatterBegin/End() won’t331

block the CPU thread so that MPI Isend() can be posted as soon as possible. Therefore, without changes,332

they could not be directly applied to CPU codes. They are currently not in PETSc releases.333

We tested these three MatMult implementations with a sparse matrix (HV15R) from the Florida sparse334

matrix collection [5]. Size of the matrix is 2,017,169 and it has 283,073,458 nonzeros. Tested on one node of335

Summit with six GPUs and six MPI ranks, the execution time was 918.9µs, 902.2µs and 904.6µs for the three336

MatMult implementations respectively. We can see MatMult(b) was 16.7µs faster than MatMult(a), which337

is close to a kernel lanuch time, indicating the launch time of y = Ax is effectively hidden in MatMult(b).338

However, MatMult(c) did not show advantage over MatMult(b). We profiled them and show their timeline339

on rank 3 in Figures 13 and 14. We can see SpMVs (i.e., csrMv kernel) with the diagonal block and the340

off-diagonal block did overlap as we expected. But we also found with overlapping the kernel’s execution341

time was a little longer than the non-overlapped one’s, offsetting any gains gotten from overlapping. Further342

investigation reveals the reason. In CUDA, concurrent kernel execution have some requirements. Firstly,343

there must be enough resources to accommodate multiple kernels. None kernel can have enough resident344

thread blocks to fill up the GPU. Secondly, a streaming multiprocessor (SM) can only host thread blocks345

from the same kernel. In our test, kernel y = Ax had a grid of size (42025,1,1) and a thread block of size346

(16,8,1), while kernel z = B*lvec had a grid of size (10507,1,1) and a thread block of size (4,32,1) (note these347

kernel launch parameters were controlled by the cuSPARSE library). However a Nvidia V100 GPU has 80348

SMs and each SM can only have maximal 32 resident thread blocks, giving total 2560 resident thread blocks349

per GPU. Therefore, we only saw overlap at the end of the first kernel, presumbly that was the time when350

some SMs were draining out from the first kernel and became available for the second one. Additionally,351

since SpMV is a bandwidth-bound kernel, running two SpMVs concurrently only limits bandwidth available352

to each and hurts their performance. We predict small compute-bound kernels would benefit from the design353

in Figure 12(c).354

6 Discussion and Conclusion355

Asynchronous computation on GPUs brings new challenges to MPI communication. In a communication356

module’s view, it has to synchronize the device properly, and also provide efficient pack/unpack kernels. In357

this report we analized and evaluated PetscSF, the communication module in PETSc, on Summit GPUs.358

14

MPI_Irecv(lvec,...)

Pack<<<...>>>(...,sbuf)

cudaStreamSynchronize(NULL)

MPI_Isend(sbuf,...)

y = Ax

y += B*lvec

VecScatterEnd:

MPI_Irecv(lvec,...)

y = Ax

cudaEventSynchronize(e)

MPI_Waitall()

MPI_Isend(sbuf,...)

y += B*lvec

Pack<<<...>>>(...,sbuf)
cudaEventRecord(e,NULL)

MPI_Irecv(lvec,...)

y = Ax

y += z

Pack<<<...>>>(...,sbuf)
cudaEventRecord(e,NULL)

cudaEventSynchronize(e)

MPI_Isend(sbuf,...)

MPI_Waitall()

cudaStreamWaitEvent(NULL,f)

z = B*lvec on stream s
cudaEventRecord(f,s)

MPI_Waitall()

VecScatterBegin:

(a) Classical MatMult (b) MatMult with early launch of y=Ax (c) MatMult with concurrent Ax, B*lvec

Figure 12: Various MatMult implementations. Boxes at the top are VecScatterBegin, at the bottom are
VecScatterEnd. In each diagram, vertically parallel solid and dashed lines indicate overlapped computation
and communication.

We first measured GPU communication latencies with an MPI ping-pong benchmark, which does not have359

any synchronizations or pack/pack kernels, and therefore whose performance can be seen as the upper bound360

for that of PetscSF. Then in Section 4, we analyzed three synchronization models in PetscSF under different361

assumptions. In Section 5.1 we evaluated a ping-pong test (sf pingpong) written in PetscSF under those362

models. From the test results, we can know costs of various CUDA synchronizations. We also found the363

extra overhead brought by PetscSF can be as low as 1µs. In Section 5.2 we introduced two new bencharmks364

(sf unpack and sf scatter) that have unpacking and local communication. From the result we can get kernel365

launch cost and also see the effect of overlapped local communication and remote communication. In Section366

5.3 we introduced index optimizations in Pack/Unpack kernels with regular neighborhood communication.367

Generally speaking, in this communiation pattern, with small (regular) domains, remote communication is368

the bottleneck, and with big domains, local communication is the bottleneck. Finally in Section 5.4 we369

evaluated PetscSF irregular neighborhood communication with a sparse matrix-vector multiplication kernel.370

PetscSF’s default synchronization model assumes that the input and output data is on the default stream,371

so that we can avoid the cudaDeviceSynchronize() and cudaStreamSynchronize() calls before the Pack372

kernel and after the Unpack kernel, which translate into a savings of 9µs. The remaining synchronization373

is a cudaStreamSynchronize() call, which costs about 4µs and is denoted below by TStreamSync. With374

that, we can model total time T of a general split-phase communication pattern PetscSFXxxBegin();375

UserKernel(); PetscSFXxxEnd() as follows:376

T = T (Pack) + TStreamSync +max

{
lMPI

T (Scatter) + T (UserKernel)

}
+ T (Unpack)

Here T (K) represents the time of kernel K, including launch time and execution time. lMPI is the MPI377

latency (i.e., time to communicate data). Pack, Unpack and Scatter only involve simple operations on378

elements (i.e., roots or leaves) and are usually bandwidth bound. One can easiy model their execution time379

as Memory size
Bandwidth , where memory size is total size of data a kernel accesses, including elements and their indices380

if elements are irregular. Bandwidth is the effective bandwidth, which depends on access patterns, such as381

contiguous access, stridded access or random access. One can write simple kernels to measure them. For382

point-to-point communication invovling only a pair of ranks, it is easy to model lMPI as we did in Section383

3. For communication invovling multiple senders and recievers sharing communication links, we do not have384

15

* Launch y = Ax

* Execute y = Ax
* Overlap with MPI

* Launch y += B*lvec

* Execute y += B*lvec

Figure 13: Timeline of MatMult with early launch of y = Ax. Note launch of kernel y = Ax does not need
to wait for finish of the Pack kernel, but kernel y += B*lvec can not start until kernel y = Ax is completed.

* Launch y = Ax

* Execute y = Ax
* Overlap with MPI

* Launch z = B*lvec

* Execute z = B*lvec
* Overlap with y = Ax

* Launch y += z

* Execute y += z

* cudaStreamWaitEvent

Figure 14: Timeline of MatMult with concurrent kernels Ax and B*lvec.

16

Kernel execution

CUDA runtime
Launch A Launch B Launch C Launch D Launch E

CUDA runtime
Launch A Launch B Launch C Launch D Launch E

0 10 20 30 40 50 60 70 80 90 100 Time(us)

0 10 20 30 40 50 60 70 Time(us)

cudaStreamSynchronize()

Kernel execution

(a) Fully pipelined kernel launches

(b) Interrupted kernel launches

Figure 15: Effect of synchronization in kernel launches. Without synchronization, the five kernels from A to
E take 70µs to finish. With cudaStreamSynchronize(), they take 95µs.

a reliable model. LogGP[1] might be an alternative, but we do not know how to validate it on Summit. We385

leave it as an open question.386

TStreamSync of 4µs seems not high, however one should be aware that the synchronization may block387

further kernel launches in the pipeline, resulting in poor launch cost hiding, which could bring a cost much388

higher than cudaStreamSynchronize() itself. For example, let’s assume we have five kernels A, B, C, D, E,389

and their execution time is 40µs, 5µs, 5µs, 5µs, 5µs respectively. Let’s further assume a kernel launch costs390

10µs. If kernel launches are fully pipelined, the total time for these five kernels is 70µs, as shown in Figure391

15(a). However, if there is a cudaStreamSynchronize() after the first kernel launch, then the remaining392

launches will be stalled and the total time will be 95µs, as shown in 15(b).393

In Section 5.4, we introduced an approach that uses CUDA events to avoid cudaStreamSynchronize(),394

but this approach requires operations in between VecScatterBegin() and VecScetterEnd() to be asyn-395

chronous, and there should not be too many operations since we need to issue MPI Isend() as soon as possible.396

The ideal solution is to make MPI routines CUDA stream aware, such that a non-blocking MPI call works as397

an asynchronous kernel launch on a given stream, and an MPI Wait() works as a cudaEventSynchronize().398

In this way, MPI calls become a regular node in the dependance graph of a computation, instead of a barrier399

in it.400

Acknowledgments401

The authors were supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Com-402

puting Research under Contract DE-AC02-06CH11357.403

404

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the405

U.S. Department of Energy Office of Science and the National Nuclear Security Administration.406

407

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National408

Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract409

No. DE-AC05-00OR22725.410

411

17

References412

[1] Albert Alexandrov, Mihai F Ionescu, Klaus E Schauser, and Chris Scheiman. Loggp: Incorporating long413

messages into the logp model for parallel computation. Journal of parallel and distributed computing,414

44(1):71–79, 1997.415

[2] Summit User Guide Website Authors. Summit User Guide. https://www.olcf.ornl.gov/for-users/system-416

user-guides/summit/summit-user-guide/. Accessed: 2019-08.417

[3] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman, Lisandro418

Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Dave A.419

May, Lois Curfman McInnes, Richard Tran Mills, Todd Munson, Karl Rupp, Patrick Sanan, Barry F.420

Smith, Stefano Zampini, Hong Zhang, and Hong Zhang. PETSc users manual: Revision 3.12. Technical421

Report ANL-95/12 - Rev 3.12, Argonne National Laboratory, 2019.422

[4] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman, Lisandro423

Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Dave A.424

May, Lois Curfman McInnes, Richard Tran Mills, Todd Munson, Karl Rupp, Patrick Sanan, Barry F.425

Smith, Stefano Zampini, Hong Zhang, and Hong Zhang. PETSc Web page, 2019.426

[5] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM Transactions427

on Mathematical Software (TOMS), 38(1):1–25, 2011.428

[6] N. Dryden, N. Maruyama, T. Moon, T. Benson, A. Yoo, M. Snir, and B. Van Essen. Aluminum:429

An asynchronous, gpu-aware communication library optimized for large-scale training of deep neural430

networks on hpc systems. In 2018 IEEE/ACM Machine Learning in HPC Environments (MLHPC),431

pages 1–13, Nov 2018.432

[7] Richard Trans Mills Hannah Morgan and Barry Smith. Evaluation of petsc on a heterogeneous archi-433

tecture,the olcf summit system part i: Vector node performance. Technical report, Mathematics and434

Computer Science Division, Argonne National Laboratory, 2019.435

[8] Judy Hill. Summit at the oak ridge leadership computing facility, 2018.436

[9] Kawthar Shafie Khorassani, Ching-Hsiang Chu, Hari Subramoni, and Dhabaleswar K Panda. Per-437

formance evaluation of mpi libraries on gpu-enabled openpower architectures: Early experiences. In438

International Conference on High Performance Computing, pages 361–378. Springer, 2019.439

[10] DK Panda et al. Osu microbenchmarks v5.6.2. URL http://mvapich.cse.ohio-state.edu/benchmarks/,440

2019.441

[11] Exascale Support Team. Exascale web page, 2019.442

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439

www.anl.gov

