<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head>
<body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class="">
<div class=""><br class="">
</div>
Lois sent out this announcement on hIPPYlib 3.0
<div><br class="">
<blockquote type="cite" class="">
<div class="">Begin forwarded message:</div>
<br class="Apple-interchange-newline">
<div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;" class="">
<span style="font-family: -webkit-system-font, Helvetica Neue, Helvetica, sans-serif; color:rgba(0, 0, 0, 1.0);" class=""><b class="">From:
</b></span><span style="font-family: -webkit-system-font, Helvetica Neue, Helvetica, sans-serif;" class="">"McInnes, Lois Curfman" <<a href="mailto:curfman@anl.gov" class="">curfman@anl.gov</a>><br class="">
</span></div>
<div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;" class="">
<span style="font-family: -webkit-system-font, Helvetica Neue, Helvetica, sans-serif; color:rgba(0, 0, 0, 1.0);" class=""><b class="">Subject:
</b></span><span style="font-family: -webkit-system-font, Helvetica Neue, Helvetica, sans-serif;" class=""><b class="">FW: [SIAM-CSE] Introducing hIPPYlib, a python-based inverse problems solver library</b><br class="">
</span></div>
<div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;" class="">
<span style="font-family: -webkit-system-font, Helvetica Neue, Helvetica, sans-serif; color:rgba(0, 0, 0, 1.0);" class=""><b class="">Date:
</b></span><span style="font-family: -webkit-system-font, Helvetica Neue, Helvetica, sans-serif;" class="">February 4, 2020 at 8:52:46 AM CST<br class="">
</span></div>
<div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;" class="">
<span style="font-family: -webkit-system-font, Helvetica Neue, Helvetica, sans-serif; color:rgba(0, 0, 0, 1.0);" class=""><b class="">To:
</b></span><span style="font-family: -webkit-system-font, Helvetica Neue, Helvetica, sans-serif;" class="">"Smith, Barry F." <<a href="mailto:bsmith@mcs.anl.gov" class="">bsmith@mcs.anl.gov</a>><br class="">
</span></div>
<br class="">
<div class="">
<div class="">Have you seen this?<br class="">
<br class="">
On 2/4/20, 9:49 AM, "SIAM-CSE on behalf of Noemi Petra" <<a href="mailto:siam-cse-bounces@siam.org" class="">siam-cse-bounces@siam.org</a> on behalf of
<a href="mailto:npetra@ucmerced.edu" class="">npetra@ucmerced.edu</a>> wrote:<br class="">
<br class="">
We are pleased to announce the availability of hIPPYlib, an extensible<br class="">
software framework for solving large-scale deterministic and Bayesian<br class="">
inverse problems governed by partial differential equations (PDEs)<br class="">
with (possibly) infinite-dimensional parameter fields. The development<br class="">
of this project is being supported by the National Science Foundation.<br class="">
<br class="">
The current version of hIPPYlib is 3.0 and can be downloaded from:<br class="">
<br class="">
<a href="https://hippylib.github.io" class="">https://hippylib.github.io</a><br class="">
<br class="">
This computational tool implements state-of-the-art scalable<br class="">
adjoint-based algorithms for PDE-based deterministic and Bayesian<br class="">
inverse problems. It builds on FEniCS for the discretization of the<br class="">
PDE and on PETSc for scalable and efficient linear algebra operations<br class="">
and solvers.<br class="">
<br class="">
A few features worth highlighting include:<br class="">
<br class="">
- Friendly, compact, near-mathematical FEniCS notation to express,<br class="">
differentiate, and discretize the PDE forward model and likelihood<br class="">
function<br class="">
<br class="">
- Large-scale optimization algorithms, such as globalized inexact<br class="">
Newton-CG method, to solve the inverse problem<br class="">
<br class="">
- Randomized algorithms for trace estimation, eigenvalues and singular<br class="">
values decomposition<br class="">
<br class="">
- Scalable sampling of Gaussian random fields<br class="">
<br class="">
- Linearized Bayesian inversion with low-rank based representation of<br class="">
the posterior covariance<br class="">
<br class="">
- Hessian-informed MCMC algorithms to explore the posterior<br class="">
distribution<br class="">
<br class="">
- Forward propagation of uncertainty capabilities using Monte Carlo<br class="">
and Taylor expansion control variates<br class="">
<br class="">
For more details, please check out the manuscript:<br class="">
<br class="">
<a href="http://arxiv.org/abs/1909.03948" class="">http://arxiv.org/abs/1909.03948</a><br class="">
<br class="">
For additional resources and tutorials please check out the teaching<br class="">
material from the 2018 Gene Golub SIAM Summer School on ``Inverse<br class="">
Problems: Systematic Integration of Data with Models under<br class="">
Uncertainty" available at <a href="http://g2s3.com" class="">http://g2s3.com</a>.<br class="">
<br class="">
Umberto Villa, Noemi Petra and Omar Ghattas<br class="">
<br class="">
-- <br class="">
Noemi Petra, PhD<br class="">
<br class="">
Assistant Professor of Applied Mathematics<br class="">
SIAM Student Chapter Faculty Advisor<br class="">
University of California, Merced<br class="">
<a href="http://faculty.ucmerced.edu/npetra/" class="">http://faculty.ucmerced.edu/npetra/</a><br class="">
<br class="">
_______________________________________________<br class="">
SIAM-CSE mailing list<br class="">
To post messages to the list please send them to: <a href="mailto:SIAM-CSE@siam.org" class="">
SIAM-CSE@siam.org</a><br class="">
<a href="http://lists.siam.org/mailman/listinfo/siam-cse" class="">http://lists.siam.org/mailman/listinfo/siam-cse</a><br class="">
<br class="">
<br class="">
</div>
</div>
</blockquote>
</div>
<br class="">
</body>
</html>