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Abstract—High performance computing platforms can bring
us great benefits on processing various ubiquitous computing
tasks. The Sunway TaihuLight supercomputer is a novel high
performance computing platform, which is ranked No. 1 among
the TOP500 list in the world. In this paper, we focus on how
to optimize the Portable and Extensible Toolkit for Scientific
computation (PETSc), running on supercomputers. The main
motivations for this study are twofold: (i) PETSc is widely
and frequently used in many scientific research fields such as
biology, fusion, artificial intelligence, geosciences, etc; and (ii)
the current nuclear PETSc does not fully utilize the potential of
the Sunway TaighLight system, especially its powerful processor,
i.e., SW26010 processor. To achieve high efficiency of PETSc,
the central idea of our optimizations is to fully promote the
performance of time-consuming and frequently used computation
components (e.g., matrix and vector modules). To this end, we
propose (i) accelerating kernel codes with computing processing
elements (CPEs), in which new compression format and targeted
optimizations for vector and matrix operations are devised;
and (ii) using more efficient memory access schemes. We have
implemented our proposals and evaluated its effectiveness and
efficiency through a real world application — Structural Finite
Element Analysis (SFEA). We obtain 16∼32 times speedup for
a single SW26010 processor. As an extra finding, the results
also show a high scalability on over 8,000 computing nodes, i.e.,
532,500 cores.

Index Terms—High Performance Computing; PETSc;
SW26010 processor; TanhuLight supercomputer

I. INTRODUCTION

Ubiquitous computing is a hot research direction in recent

years and it has attracted much attention in both academia and

industry [1]. Many ubiquitous computing tasks are challenging

due to the real-time response requirement [2, 3]. Previous stud-

ies have shown that high performance computing platforms

can bring us great benefits to processing various ubiquitous

computing tasks [4–6]. This essentially indicates that promot-

ing the performance of high performance computing platforms

can directly contribute to many other application domains [7–

9]. There are numerous high performance computing platforms

like Tianhe-2, Sunway TaihuLight, Titan, Sequoia, etc.

Recently, as reported in [10], the Sunway TaihuLight super-

computer is ranked No. 1 among Top500 list in the world. It is

one of new generation Chinese supercomputers, designed for

large-scale applications in scientific computing and industrial

areas [11]. Like other supercomputers, Sunway TaihuLight has

also user-friendly interfaces and matched libraries, which can

make it easier for programmers to write high performance

applications [11, 12]. PETSc (Portable and Extensible Toolkit

for Scientific computation) is such a toolkit that supplies many

libraries and solvers for various application problems on high-

performance computers [13–15]. Particularly, PETSc is widely

used around the world and there have been more than 700

publications that used PETSc [16].

Usually, PETSc uses the message passing interface (MPI)

for message passing and parallelization among distributed

clusters. On general homogeneous systems, pure MPIs adopt

the neighborhood collectives, which may lack scalability.

In existing literature, there have been some works studying

how to achieve strong scaling with PETSc, and the Hybrid

MPI/OpenMP optimization has been proposed [17]. Further-

more, the core PETSc team [16] suggests a hybrid MPI-thread

method that judiciously uses the MPI shared memory, and thus

achieving favourable performance. In contrast, on heteroge-

neous systems, the performance is more depended on non-MPI

elements (e.g., NVIDIA GPGPU and Intel Xeon Phi), which

are main components of popular high performance computing

platforms nowadays. Typically, to fit PETSc on heterogeneous

systems and to achieve high efficiency, some modifications and

re-factorizations are needed. It has been intensively studied

on how to efficiently extend PETSc to heterogeneous systems

and/or optimize the performance of PETSc (e.g., [18–21]).

Nevertheless, to the best of our knowledge, little attention

has focused on optimizing the performance of PETSc on the

new heterogeneous system — the Sunway TanhuLight. This

motivates us to study this significant and interesting issue.

Compared against other heterogeneous systems, the Sunway

TaihuLight supercomputer uses the new published many-core

processor — SW26010. This processor employs a Scratch

Pad Memory (SPM) structure, which is generally used in

embedded systems. Note that, although the SPM structure is

also employed in other processors (e.g., NVIDIA GPGPU

[22]). The main features of SW26010 processor are: (i) it

uses pure SPM caches and shares main memory among all
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(a) gmres (b) gmres detail

Fig. 1. Time cost distribution of a widely used solver “gmres”. (a)
Vec:vector, Mat: maxtrix; (b) MatMult: SpMV.

cores; and (ii) it gets a custom programming language and

compiling environment, normal C/C++ and FORTRAN codes

can directly run on it. Current implementation of PETSc

on TaihuLight supercomputer is a straightforward transplant,

without fully exploiting the potential of the new system,

especially the new published SW26010 processor. As indicated

in our experiments, the performance based on such an imple-

mentation is not efficient enough (e.g., a MatMult operation

takes about 8.41 seconds, whereas our optimization solution

takes only 0.35 seconds).

To achieve high efficiency of PETSc, the central idea of

our optimizations is to fully promote the performance of time-

consuming and frequently used computation components. To

dig out such components, we conduct extensive tests on PETSc

that contains various algorithms and solvers. An interesting

finding is that main computational workloads always and

finally fall on the Vector and Matrix modules, and particularly

the Sparse Matrix-Vector multiplication (SpMV) takes up

most of time. Fig. 1 shows a representative example. The

implementation and optimization of SpMV on heterogeneous

platforms are challenging, due to (i) the irregularities of sparse

matrices, and (ii) the parallelization of SpMV usually involves

many tricky issues such as memory access and load balancing.

In view of this, we present two simple yet efficient ideas: (i)

we accelerate kernel codes with computing processing ele-

ments (CPEs), in which new compression format and targeted

optimizations for vector and matrix operations are suggested;

and (ii) we employ more efficient memory access schemes.

To verify the performance of our optimization solution, we

implement our proposal and evaluate it based on a real

world application — structural finite element analysis (SFEA).

Extensive experimental results show us that it is efficient and

effective to optimize PETSc on Sunway TaihuLight based

on our suggested implementation. To summarize, the main

contributions of this paper are as follows.

• We suggest the efficient method to optimize PETSc on

TaihuLight supercomputer. The optimization strategies

employed by our method is simple yet efficient.

• We implement our method on Sunway TaihuLight super-

computer with more than 8,000 nodes, which is equiva-

lent to 532,500 cores.

• We test the performance of PETSc through a real world

application. We obtain 16x∼32x speedup for most PETSc

functions in terms of a single SW26010 processor. Mean-

while, we also test its performance via more computing

nodes, showing its high scalability.

The remainder of the paper is organized as follows. Section

II introduces background. Section III presents our optimiza-

tions in detail. Section IV covers the experimental results, and

Section V concludes the paper.

II. BACKGROUND

This section introduces Sunway TaihuLight, PETSc, and

SpMV, for ease of understanding the rest of the paper.

A. Sunway TaihuLight System

Sunway TaihuLight is the first supercomputer with peak

performance over 100PFlops [10]. The computing system

of the Sunway TaihuLight is built using a fully customized

integration approach with 4 levels. The entire computing

system contains 40 cabinets. Each cabinet consists of 4 super

nodes. And each super node includes 256 computing nodes,

which are the basic units of the computing system. A single

computer node is constituted by one SW26010 processor, 32

GB memory, a node management controller, and some other

necessary components.

The SW26010 processor is a brand new processor designed

for the new generation of supercomputers. The processor

consists of four core groups, each of them has a single man-

agement processing element (MPE), 64 computing processing

elements (CPEs), one memory controller (MC) and 8 GB

RAM. Both MPE and CPE cores get a 1.45 GHz frequency.

Each core of the CPE has a single floating point pipeline that

can perform 8 flops per cycle, and the MPE has a dual same

pipeline.

Note that, the SW26010 processor gets a special feature

in cache organization to fit the high peak performance. Each

MPE has a 32 KB L1 instruction cache, a 32 KB L1 data

cache, and a 256 KB L2 cache for both instruction and data.

Each CPE has a 16 KB L1 instruction cache and has no L2

cache. Instead, a user-controlled ScratchPad Memory (SPM)

is designed for CPE. The SPM can be configured as either a

fast buffer that supports precise user control, or a software-

emulated cache that achieves automatic data caching.

B. The PETSc

PETSc consists of many modules, as shown in Fig. 2. All

these modules can be functionally divided into two categories

[16]. The upper layer mainly includes (i) the KSP module,

which provides fifteen Krylov subspace methods; (ii) the

PC module, which describes dozens of pre-conditioners; (iii)

the TS module, which supports for solving time-dependent

(nonlinear) partial differential equations, differential algebraic

equations, etc; and (iv) the SNES module, which is a collection

of the nonlinear solvers.

In contrast, the lower layer includes (i) the index sets

(IS) module, which is responsible for indexing, permutations,
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Fig. 2. Organization of the PETSc Libraries

renumbering, etc; (ii) the vectors (Vec) module; and (iii) the

matrices (Mat) module. Note that, the Vec and Mat modules

provide the structures of vectors and matrices for distributed

cluster, data managements of distributed memory architecture,

and basic operations of vectors and matrices.

The above hierarchy effectively distinguishes the abstract

algebra from computational implementations. The upper layer

provides interface and algorithms, while the communication

and calculation workloads are handed over to the lower layer,

for which some basic libraries like MPI and BLAS are

used to assist the execution of communication and computing

operations.

C. The Sparse Matrix-Vector Multiplication

Given a sparse matrix A and a vector x, SpMV performs

Ax = b. (1)

where b denotes the result, which is a new generated vector.

The Sparse Matrix-Vector multiplication (SpMV) is a very

common operation in high performance computing. In past

years many storage formats for sparse matrix is presented to

improve the computing performance of SpMV.

The compressed sparse row (CSR) format could be the most

popular and general-purpose representation for sparse matrix.

The CSR explicitly stores column indices and non-zero values

in arrays indices and data, and the third array ptr (i.e., row

pointer) allows the CSR format to represent rows of varying

length. As an example, consider a sparse matrix A shown in

Eq. 2, its CSR format is shown in Eq. 3.

A =

⎡
⎢⎢⎣

2 4 0 0
0 4 0 5
2 0 1 3
0 0 5 6

⎤
⎥⎥⎦ , (2)

ptr = [0, 2, 4, 7, 9],
indices = [0, 1, 1, 3, 0, 2, 3, 2, 3],
data = [2, 4, 4, 5, 2, 1, 3, 5, 6]

(3)

Another well-known format is the ELLPACK (ELL). It

compresses the non-zero elements along each row, the num-

bers of elements are made to be same via zero-filling, in

order to store the matrix data in column major ordering; and

the array for row pointers is omitted. The ELL format is

suitable if the rows have similar numbers of non-zero elements.

Otherwise, it is inefficient since the number of zero-fillings in

this case is much larger. For the matrix A above, Eq. 4 shows

its ELL format.

data =

⎡
⎢⎢⎣

2 4 ∗
4 5 ∗
2 1 3
5 6 ∗

⎤
⎥⎥⎦ , offsets =

⎡
⎢⎢⎣

0 1 ∗
1 3 ∗
0 2 3
2 3 ∗

⎤
⎥⎥⎦ (4)

Another intuitive storage scheme is the coordinate (COO)

format. It uses row, indices, and data to store the row

indices, column indices, and values of the non-zero entries,

respectively. Eq. 5 shows the example.

row = [0, 0, 1, 1, 2, 2, 2, 3, 3],
indices = [0, 1, 1, 3, 0, 2, 3, 2, 3],
data = [2, 4, 4, 5, 2, 1, 3, 5, 6].

(5)

III. OUR METHOD

In this section, we first discuss our method at a high level

and then cover our optimization strategies and implementation

in detail.

A. Overview

As we mentioned earlier, although some prior work used

PETSc on TaihuLight supercomputer, none of prior work fo-

cused on optimizing the performance of PETSc on TaihuLight

supercomputer. In this case, when the libraries and/or functions

of PETSc is called, they are run on MPE, instead of CPE. It is

inefficient, as we will show later (in Table I). This motivates us

to re-examine the PETSc and develop the optimization method

tailored for the new generation supercomputer. The central

idea of our method is to fully promote the performance of

time-consuming and frequently used computation components.

Our method (or optimization) is mainly based on the following

two observations: (i) our preliminary study shows us that main

computational workloads always and finally fall on the Vec and

Mat modules (recall Fig. 1), and so it allows us to focus more

of our attention on optimizing these parts; and (ii) we observe

that the computing processing elements (CPEs) in SW16010

processor provide most performance of the computing node.

At a high level, we improve the PETSc on TaihuLight

supercomputer from three points of view. First, we accelerate

vector operations with CPEs. Notice that, matrix operations are

essentially also accelerated, since matrix consists of vectors.

Second, we suggest a new compression format for sparse ma-

trix. Third, we employ more efficient memory access scheme.

In what follows, we present the details of our method.

B. Accelerating Vector Operations with CPEs

The vector operations are essential part of all solvers. To

accelerate vector operations with CPEs, we should connect

vector operations to CPEs. There are two ways. (i) For

functions created manually, we need to use the interface,

540



such as athread_spawn(·), in athread library to active

it; here the athread library is specially designed for CPE

programming. (ii) For PETSc operations that can exactly

match the standard interfaces in the “BLAS (or swBLAS)”

library provided by the compile environment, we can directly

use the standard interfaces to active them. For example,

“VecAXPY”operation is a vector operation (in PETSc) that

performs y ← Ax+ y, and it exactly matches the BLASaxpy

interface. In this case, we can accelerate the vector operation

“VecAXPY” with CPEs by using a simple call. It is worth

noting that, although some vector operations (like VecAXPY)

in PETSc exactly match the standard interfaces, and the

optimization like the above is easy to implement. Yet, such

an optimization does not make much improvement in terms

of the overall performance. This is because these operations

like VecAXPY take little part of total running time, as we will

show later (in Table I of Section IV).

To get much more improvement, we analyze the vector

operations and available library interfaces in a deeper level,

and optimize some operations that are time-consuming, and

approximately but not exactly match the interfaces in BLAS

(or swBLAS) library. Generally, there are two common cases:

(i) the PETSc operation changes input(s) and/or output(s) of

the standard interface; and (ii) the PETSc operation repeatedly

calls some standard interface. We next use two representative

examples to illustrate how we achieve the optimizations for

these time-consuming operations.

Algorithm 1 VecMAXPY with swBLAS

Input: Parameter array a; arrays x[][]; parameter M ; array

y; length N .

Output: Array y.

1: for i ← 1 to M do
2: call BLASaxpy(a[i],x[i],y,N);

3: return Array y.

Case (i). One of examples is the VecAYPX operation, which

performs y ← Ay + x. In situations like this, using standard

libraries needs to finish a disassembly of the operation, as

shown in Algorithm 2. This leads to the extra memory migra-

tion (see Lines 2 and 4). The memory migration takes about

half of the total time of VecAYPX operation. (Other operations

like VecWAXPY and VecAXPBYPCZ have the similar time

cost).

Algorithm 2 VecAYPX with swBLAS

Input: vector yin; coefficient α; vector xin; length of vector

n.

Output: vector yin.

1: alloc array ztemp;

2: copy data from xin to ztemp;

3: call BLASaxpy(α,yin,ztemp,n);

4: copy result from ztemp to yin;

5: free array ztemp;

6: return

To alleviate this dilemma, “manual” optimization is pro-

posed to further improve the performance. Note that, here

manual optimization refers to that, we do not still use the

existing interfaces (or functions) like “BLASaxpy” (see Line

3 in Algorithm 2); instead, we develop new interfaces (or

functions) in order to make full use of the computation

performance of CPEs. Algorithm 3 shows our manual opti-

mization, in which blength refers to the buffer length which

is determined by the SPE size (Lines 4-7, 10). The general

idea of this optimization is first to distribute workloads among

CPEs (Lines 2-3), and then use single instruction multiple data

(SIMD) instructions to perform calculations (Line 8).

Algorithm 3 VecAYPX manual

Input: VecAYPX Arg para.

Output: vector yin.

1: xin, yin, α, n ← para;

2: mystart = n ∗ getThreadId/threadNum;

3: myend = n ∗ (getThreadId+ 1)/threadNum;

4: for i = mystart; i < myend; i+ = blength do
5: Load xin[i : i+ blength];
6: Load yin[i : i+ blength];
7: for j = i; j < i+ blength; j+ = sizeofsimd do
8: yin[i] = simdvmas(a, yin[i], xin[i]);
9: Write back yin[i:i+blength]

10: return

Algorithm 4 VecMAXPY manual

Input: VecMAXPY Arg para.

Output: Array y.

1: for i ← 1 to N , i+ = Blocklen do
2: read y[i : i+Blocklen] to ty[1 : Blocklen];
3: for j ← 1 to M do
4: read x[j][i : i+Blocklen] to tx[1 : Blocklen];
5: read a[j] to ta;

6: for j ← 1 to Blocklen do
7: ty[i] ← ya ∗ tx[i] + ty[i];
8: store ty[1 : Blocklen] to y[i : i+Blocklen];
9: return Array y.

Case (ii). One of examples is the VecMAXPY operation,

which performs y ← Aixi + y, i ∈ [0,M). Similarly, we can

also optimize it with swBLAS, as shown in Algorithm 1. Nev-

ertheless, we observe that this method invokes “BLASaxpy”

interface (or function) M times (Lines 1-2); this is not efficient

enough. To further improve the performance, we thus suggest

a manual implementation to VecMAXPY. Algorithm 4 shows

our method in which Blocklen refers to the size of each

“piece”. Note that, the basic idea of this method is to divide the

array y into pieces which can be loaded in SPM. This way,

it can effectively avoid redundant memory accesses. (Other

operations like VecMDOT can be manually optimized in the

same way.)
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C. New Compression Format to Sparse Matrix

As discussed earlier, SpVM (i.e., MatMult) operation is

time consuming. An inappropriate compression format easily

incurs irregular memory accesses, damaging the performance.

In the context of new system, it is urgently important to

study efficient compression format for sparse matrix. To fully

leverage the new feature of the SW16010 processor, we

suggest a new compression format for sparse matrix. In short,

the new compression format is a variant of the classic ELL

format (recall Section II). Yet, it is different from ELL in the

following points at least:

• We compress the non-zero elements along each column;

we call it Column-ELL (CE for short).

• We use a hybrid manner to store matrix, i.e., one of

parts is stored using CE, and the other is stored using

another existing format “COO” (see Section II); we call

it Column-ELL-COO (CEC for short).

Compared against ELL, the main benefit of Column-ELL

is that, the accesses of input matrix is continuous and every

row of data matrix corresponds to one element in input vector.

Consider again the matrix A in Eq. 2, the Column-ELL format

is as follows:

data =

⎡
⎢⎢⎣

2 2 ∗
4 4 ∗
1 5 ∗
5 3 6

⎤
⎥⎥⎦ , offsets =

⎡
⎢⎢⎣

0 2 ∗
0 1 ∗
2 3 ∗
1 2 3

⎤
⎥⎥⎦ . (6)

Nevertheless, the Column-ELL has a flaw. That is, when

there are some columns (or even only one) which have (has)

more elements than others, there will be redundant zero-filling.

To fix this, we thus present Column-ELL-COO (CEC) format

mentioned before. More specifically, given a threshold K, the

part exceeding K non-zeros in a row is extracted to be stored

by COO, and the other part is stored by Column-ELL in order

to minimize zero-padding. Consider again the matrix A in Eq.

2, and we set K = 2 for simplicity. Then, the CEC format is

as follows:

COO :

⎧⎨
⎩

row = [3]
indices = [3]
data = [6]

(7)

C − ELL :

⎧⎪⎪⎨
⎪⎪⎩

data =

⎡
⎢⎢⎣

2 2
4 4
1 5
5 3

⎤
⎥⎥⎦ , offsets =

⎡
⎢⎢⎣

0 2
0 1
2 3
1 2

⎤
⎥⎥⎦ .

(8)

With the above compression format CEC, we can easily

partition matrix and distribute the sub-matrices to MPEs and/or

CPEs. There are two ways.

Manner 1. It partitions matrix and distributes all sub-

matrices among MPEs. All of the sub-matrices are stored in

CEC format. The CPEs will averagely get a share of the sub-

matrix from MPE. The size of sub-matrix is n rows, where n
is determined by the threshold K and the size of SPM. For

example, if each SPE gets mB SPM, and each number takes

fB, then every sub-matrix will get n = m×K/(f ∗ 2). Then,

Algorithm 5 Memory Access Optimization

1: for i ranges from start to end do
2: Start pre-fetch data for first iteration with DMA;

3: for j ranges from 0 to bufferSize do
4: Start pre-fetch data for next iteration with DMA;

5: Synchronize this iteration with DMA;

6: Calculate with pre-fetched data;

7: Synchronize the last iteration with DMA;

8: Calculate with final data;

9: return

each CPE will maintain a sub-part of array b and all these

sub-bs will be added up finally.

Manner 2. It partitions matrix among MPEs, and then

distributes sub-matrices among CPEs. All of these sub-sub-

matrixes are also stored in CEC format. The CPEs will

uniformly get their own “sub-sub-matrices”. The size of sub-

sub-matrix is same to that of sub-matrix in Manner 1.

D. Memory Access Optimization

As we mentioned in Section II-A, the CPE in the SW16010

processor has no L2 level cache. Instead, it uses a scratchpad

memory (SPM) to replace it. The benefit of this design is that,

it gives users more chance (or greater authority) to mange

the tasks like memory access, data prefetching, and so on.

Note that, for the general cache these tasks are automatically

managed by operation system. In our method, we shall fully

utilize this feature to further improve the performance.

In brief, our main idea is to use a loop prefetching strategy

to hide the data access latency, since we observe that most

of operations in PETSc are single instruction multiple data

(SIMD) operations. The rationale of the loop prefetching

strategy is described as follows. Assume that there are n
iterations in solving the equations. Then, in the process of

computation of the ith iteration (i ∈ [1, n − 1)), we prefetch

the data which shall be used in the (i+1)th iteration. Note that,

it is trivial to know the data to be used in the next iteration,

since the calculations for matrix and vector are intuitive and

regular.

To implement our method, we adopt the so-called double-

buffering mechanism, which is a technique designed to hide

memory access latency. Algorithm 5 shows the pseudo-codes,

in which DMA is used to support data transmission between

SPM and main memory.

IV. PERFORMANCE STUDY

A. Experimental Settings

In our experiments, we run SW26010 processor with the

CG private mode, which is a general used mode. In this mode,

each of the four CGs takes an independent address space. It

is appropriate to use this mode, since 8 GB memory space

is enough for almost all operations of PETSc. To test the

performance, we use a real world application, structural finite

element analysis (SFEA), as the test case. The SFEA example
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TABLE I
A GENERAL VIEW OF OUR RESULTS

swBLAS manual
B T S T S

VecAXPY 0.47 0.03 14 - -
VecDot 0.18 0.01 16 - -

VecAXPBYCZ 3.11 0.20 15 0.10 30
VecWAXPY 2.70 0.16 17 0.08 32
VecMAXPY 8.51 0.80 11 0.43 20
VecMDOT 4.51 1.07 4.22 0.43 20
MatMult 8.14 8.14 1 0.35 23.26

used in our experiments is extracted from the automotive body

design engineering. The coefficient matrix of finite element

equations is a sparse symmetric positive definite matrix. We

choose the general gmres and bcgs methods, which fit the

coefficient matrix best, to solve equations.

Generally, the SFEA consists of five steps: (i) forming the

stiffness matrix and the equivalent nodal load array of every

unit; (ii) integrating the stiffness matrix and the equivalent

nodal load array of each unit to form the overall stiffness

matrix and integral nodal load array; (iii) introducing the

given displacement boundary condition; (iv) solving the finite

element equations; and (v) calculating the unit strain and

stress. In our experiments, we intercept the time for Step (iv)

to evaluate the performance.

For short, we use the notations “T” and “S” to denote

time and speedup, respectively. And the baseline method is

shortened as B. The baseline method refers to the current

implementation (which does not use any optimizations and/or

manually modifications), unless stated otherwise. In our re-

sults, all the reported time is in second. It is obtained by

running 100 times, and then we calculate the average value.

In our experiments we conduct single-node tests and multi-

node tests. For single-node tests, the number of CPEs used in

our experiments is [2,4,8,16,32,64]. For multi-node tests, the

number of nodes is [32,218,512,1024,2048,4096,8192], and

for each node all 64 CPEs are used. In addition, we use the

median of row lengths of matrix as the threshold K mentioned

in Section III-C.

B. Performance Results for Single-node Tests

Table I shows a general view of the running results on a

single node, in which the most time-consuming operations are

picked out, and some upper operations, which are composed of

these basic operations, are omitted. For the baseline method,

these typical operations (e.g., those shown in the table) do not

use optimizations suggested in the paper.

It can be seen that we gain about 14× ∼ 16× speedup

for operations like VecAXPY and VecDot, once we use the

swBLAS library, which is a well optimized library designed

specially for the SW26010 processor. In addition, the op-

erations, like VecAXPBYCZ, VecWAXPY and VecMAXPY,

can also benefit from the use of swBLAS. Particularly, a

deeper manually optimization provides us an extra (about 2×)

Fig. 3. Performance results in a deeper viewpoint. Six methods are compared:
CSR, ELL, CE, CEC-1, CEC-2, CEC-2d.

speedup. These results essentially demonstrate the effective-

ness of our optimizations designed for the vector module.

Interestingly, the operation MatMult seemingly cannot ben-

efit from the use of swBLAS. This is mainly because this oper-

ation performs SpVM, in which the optimizations designed for

the vector module cannot contribute to SpVM. Nevertheless, a

deeper manually optimization provides us much improvement,

it gets about 23.26× speedup. This basically demonstrates the

effectiveness of optimizations designed for the matrix module.

It is necessary to investigate the performance of the MatMult

operation in a deeper viewpoint, since it allows us to observe

more clearly the effectiveness of our optimization designed

for matrix module. In this set of experiments, we use CSR

and ELL provided by PETSc as the baselines. To validate

the effectiveness of our optimizations clearly. We implement

Column-ELL (CE), Column-ELL-COO (CEC). Particularly,

for the CEC format, we implement three versions: CEC format

with partition manner 1 (CEC-1), CEC format with partition

manner 2 (CEC-2), CEC-2 with double-buffer optimization

(CEC-2d). Fig. 3 shows the performance results of these

methods. From this figure it can be seen that the proposed

method, CE, outperforms two baselines. It demonstrates that

the Column-ELL format is more suitable for sparse matrix

on the Sunway TaihuLight System. In addition, we observe

that three CEC methods are much better than CE. This

essentially demonstrates that it is effective to use a hybrid

strategy. Nevertheless, it is easy to see that the significant

improvement happens when partition manner 2 is used. This

implies that irregular memory access significantly limits the

performance of the CEC-1, while CEC-2 (i.e., with partition

manner 2) can efficiently alleviate this limitation. Our final

method (i.e., CEC-2d) further improves CEC-2, and achieves

23.11× speedup (compared against the CSR), demonstrating

the superiorities of our method.

Furthermore, we test the parallel efficiency by varying the

number of CPEs in the SW16010 processor. In this set of

experiments, we also show the performance differences before

and after the memory access optimization is used. Fig. 4 shows

the experimental results. Theoretically, the ideal parallelization

should get 64× speedup when 64 CPEs are used. Yet, the

results show us that, for the method without the memory

access optimization, its parallelization reaches the upper bound

when the number of CPEs is added to 16. Fortunately, when

the memory access optimization is used, the performance is
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Fig. 4. Performance results before (dotted lines) and after (solid lines) the
memory access optimization is used.

TABLE II
RESULTS OF WEAK SCALING

NodesNum 32 128 512 2048 8192
VecMDot 0.82 0.83 0.94 1.00 1.11

VecMAXPY 2.19 2.20 2.20 2.25 2.25
MatMult 3.39 3.54 3.24 3.34 3.39

improved significantly. This verifies the effectiveness of the

memory access optimization. It is worth noting that, there is

still a gap between ideal parallelization even if our memory

access optimization is used. It is interesting and challenging

to further improve the parallization, and this could be another

independent work, we leave it as the future work.

C. Performance Results for multi-node Tests

Usually, when multiple nodes are used, the scalability would

be the focus of attention. In the context of high performance

computing there are two common notions of scalability: (i)

strong scaling, which is defined as how the solution time varies

with the number of processors for a fixed total problem size;

(ii) weak scaling, which is defined as how the solution time

varies with the number of processors for a fixed problem size

per processor. In our experiments, we will examine both of

them. All the results reported in this subsection refer to our

preferred method (i.e., the proposed optimizations are fully

used).

First of all, we discuss weak scaling among nodes. In

this set of tests, the input matrix for 32 nodes is a com-

pressed (106 × 106) sparse matrix, and when the number

of nodes increases, we keep the calculation load for each

node unchanged by changing the matrix size. Table II shows

the results of PETSc on Sunway TaihuLight System; the

most time-consuming operations, VecMDot, VecMAXPY and

MatMult are chosen to be listed. Ideally, a perfect weak scaling

should be a constant (or fixed) time to the solute problem,

independent from the size of nodes. From this table it can

be seen that, for the VecMAXPY (or MatMult) operation,

the time cost does not change much with the increase of

nodes. It basically demonstrates that our method has good

weak scaling. It is worth noting that the weak scaling of the

VecMDot operation is not as good as other two operations.

This is mainly because the VecMDot operation inherently calls

function “VecMDot MPI”, in which an “MPI Allreduce” op-

Fig. 5. Results of strong scaling: time and speedup

Fig. 6. Results of strong scaling (parallel efficiency)

eration is triggered. Note that, the “MPI Allreduce” operation

usually incurs that the traffic cost rise with the increase of

nodes.

Fig. 5 shows the running time, and also the speedup in terms

of the strong scaling. Here the input matrix is a compressed

(256×106, 256×106) sparse matrix, regardless of the number

of nodes. It can be seen that the time cost basically keeps

being halved as the number of nodes doubled. Note that, the

performance is almost near to the ideal performance in terms

of speedup (see the dotted and solid lines). It demosntrates the

good scalability of our method from anther point of view.

Furthermore, we also examine the parallel performance

based on the strong scaling metric. Note that, here the parallel

efficiency is measured by the ration of speedup and the

number of nodes. Fig. 6 shows the parallel efficiency by

varying the number of nodes. It can be seen that, regarding

the parallel efficency, VecMAXPY and MatMult keep beyond

90%, regardless of the number of nodes. Yet, VecMDot drags

down the parallel efficiency especially when the number of

nodes is large (e.g., 8192). This could be mainly due to the

increase of the communication cost, since VecMDot triggers

the “MPI Allreduce” operation (as stated previously). Never-

theless, the overall parallel efficiency is good, since it keeps

over 80% (see the yellow line with triangle).

V. CONCLUSIONS

In this paper we present the efficient method to optimize the

PETSc on the Sunway TanhuLight System. The central idea of

our method is to improve the performance of time-consuming

and frequently used computation components. We take full

consideration into the features of the new system, and optimize

the PETSc from three points of view: (i) accelerate vector

operations with CPEs; (ii) suggest a new compression format
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for sparse matrix; and (iii) employ more efficient memory

access scheme. We implement our method and validate its

efficiency and effectiveness through extensive experiments.
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