
 
 
 
 
 
 
 
 

 

 
 

            
 
 
 

 
The image above is the throughput for vectors of nearby sizes performing a dot 
product on the IBM POWER9. This demonstrates how the complexity of the hardware 
design can produce different performance results in surprising ways. 
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Evaluation of PETSc on a Heterogeneous Architecture

the OLCF Summit System

Part I: Vector Performance

Hannah Morgan, Richard Tran Mills, Barry Smith
Mathematics and Computer Science Division

Argonne National Laboratory

1 Introduction

We report on basic performance of the Portable, Extensible Toolkit for Scientific Computation (PETSc)
[?, ?] on the IBM/NVIDIA Summit computing system [?] at the Oak Ridge Leadership Computing Facility
(OLCF). PETSc provides NVIDIA GPU support for vector and sparse matrices based on CUDA and the
cuBLAS and cuSPARSE libraries [?]. Using the organization of the PETSc library, many PETSc solvers
and preconditioners are able to run with GPU vector and matrix implementations. This report summarizes
the basic design of Summit, the performance of PETSc vector operations, and provides a limited analysis of
the causes of the results. The planned exascale computing systems have a similar design to Summit thus it
is important to have a well developed understanding of Summit in preparation for these systems.

2 The Summit System and Experimental Setup

Each node on Summit is equipped with six NVIDIA Volta V100 GPU accelerators and two IBM POWER9
processors, each with 21 cores available to users, for a total of 42 cores. A GPU on Summit can be utilized
by more than one MPI rank simultaneously, the term NVIDIA uses is Multi-Process Service (MPS), we
use the term virtualization. For example a single physical GPU may be treated as 4 virtual GPUs by four
MPI ranks running on four CPU cores. Virtualization is enabled by submitting jobs with the bsub option
-alloc flags gpumps.

To obtain high performance on Summit’s node it is important to select the optimal physical cores and
associate them with appropriate GPUs. The two POWER9 processors are each connected directly to three
of the GPUs (Figure 1, left) so cores associated with each process should, for best performance, utilize one
of the three GPUs connected to the same socket. By default when only utilizing the CPUs (for example,
to compare GPU and CPU performance) the CPU cores are assigned from the first socket until it is full
before using cores from the second socket; thus benchmarking numbers that utilize these defaults are not
appropriate. To utilize the CPUs effectively we advocate for the use of two resource sets each with 21
associated cores to take advantage of both sockets of the Summit node (red and yellow in Figure 1, right).
Furthermore, adjacent CPU cores share L2 and L3 cache so we use the jsrun option --bind packed:2 to
bind each rank to two CPU cores so that each process has dedicated L2 and L3 cache. We also launch
all jobs using the --launch distribution cyclic option so that MPI ranks are assigned to resource sets
in a circular fashion, which we deem appropriate for most high performance computing (HPC) algorithms.
These choices are shown with seven MPI ranks in Figure 1, right. Since the Summit system has 6 GPUs
and 42 POWER9 cores we will, when comparing performance of the GPU to the CPU, often compare the
performance of one GPU to seven CPU cores.
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Figure 1: One node of Summit (left) and CPU allocation of 7 MPI ranks (right) from
https://jsrunvisualizer.olcf.ornl.gov/.

2.1 PETSc Vector Operations

We present results from runs of PETSc vector operations on one node of Summit. The program creates
vectors with random entries, copies them to the appropriate memory and then performs operations. We
report the flop rate in Mflops/s for various vector sizes utilizing both GPUs and CPUs. We also report
memory throughput (in 8 Mbytes/s for easy comparison with the floating pointing results) for vector copy
and set operations. We use the term “throughput” to mean the amount of data moved in a time interval. This
is a combination of latency and bandwidth. In all cases the vectors are already in the memory of the device
where the performance is being measured. All operations are synchronized with CudaDeviceSynchronize()

so the true time of the operation is used. The caches are flushed by performing vector operations on other
vectors to remove any effects of the data, by happenstance, being in the cache. For parallel benchmarks, an
MPI Barrier() is used immediately before the operation so that all MPI ranks start together.

The specific vector operations are

• x = a ∗ x + y, known as AXPY and implemented with PETSc’s VecAXPY operation (which utilizes
BLAS on the CPU and cuBLAS on the GPUs).

• d = xT y, known as the dot product and implemented with PETSc’s VecDot operation (this also utilizes
BLAS and cuBLAS).

• memory copy, implemented with VecCopy (which utilizes memcpy on the CPU and cudaMemcopy on
the GPUs). In addition we use cudaMemcpy for copies between the CPU and GPU.

• setting a vector to a single value, implemented with VecSet function (which utilizes cudaMemset to set
a vector to zero the GPUs).

A single vector operation is timed for each operation. All vector sizes refer to the global size of the vector
which may be spread among multiple computational units.

3 Experimental results

Figure 2 presents a high level view of the performance of the Summit nodes. Details are discussed below.
Note the use of the log scale and that towards the right the GPU is performing significantly better than the
42 CPU cores, while towards the left the CPU is faster.
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Figure 2: Effect of vector size on vector operations compared with memory throughput (one MPI rank per
GPU). Note the log scale.

Figures 3 and 4 compare the performance of the GPUs and CPUs for increasing vector sizes. Note the
cache effects of the CPU cores for moderate sized vectors. For shorter vectors, less than around 106 entries,
the CPU performance for vector operations including copies, is far superior to the GPU. For larger sizes,
on the other hand, the GPU can be roughly 20 times faster. This means that 97 percent of the achievable
vector performance for large vectors is on the GPUs. Performance on the CPU is relatively independent of
vector size (outside the cache effect size), but for the GPUs is low except for large vectors. The drop in
performance of the CPU at 21 cores is because the remaining cores share L2 and L3 caches with previously
utilized cores and must also share the memory bandwidth.

Figure 3: VecDot flop rate on GPUs, with one MPI rank per GPU, (left) and CPUs (right).
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Figure 4: VecAXPY flop rate on GPUs, with one MPI rank per GPU, (left) and CPUs (right).

Figures 5, 6, and 7 explore the performance effects of GPU virtualization. Performance of the GPUs
is essentially the same even when divided into up to eight virtual GPUs for smaller vectors. For larger
vectors the performance is worse. Note that in Figure 5 the vectors on six GPUs are 1/6 the size they are
on one GPU, this means the effective throughput numbers each are utilizing are lower than may have been
expected, since the six GPUs no longer have a long enough vector for full performance. Figure 7 shows the
clear benefits in CPU to GPU copies with GPU virtualization. Using 2 MPI ranks per GPU almost doubles
the performance, after this the performance is roughly the same, presumably because the CPU memory
bandwidth has become saturated. This indicates that if an application has many CPU to GPU copies it
may benefit from two or more MPI ranks per GPU.

Figure 5: Performance of GPU virtualization for VecDot operations (left) and VecAXPY (right) for vectors
of length 108.
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MPI ranks latency bandwidth
1 31 99,000
2 33 99,000
3 34 96,000
4 38 96,000
5 40 96,000
6 43 99,000
7 45 105,000
8 46 105,000

Figure 6: VecAXPY virtualization performance for small vectors (105 − 107) on 1 GPU with latency (10−6

seconds) and bandwidth (8 Mbytes/second).

Figure 7: Effect of vector size on CPU to GPU copy throughput with 6 GPUs (multiple MPI ranks per
GPU) and 1 GPU with 1 MPI rank.

Figures 8, 9 and 10 show the performance of the vector operations as a function of vector size for different
number of GPUs and CPU cores. Since the GPUs are independent entities the performance scales essentially
perfectly for more GPUs. The CPU cores are not independent, as they share a common memory, and hence
performance improvement decreases as more cores are utilized.
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Figure 8: Effect of vector size on flop rate for VecDot (left) and VecAXPY (right) on the CPU and GPUs
with one MPI rank per GPU.

Figure 9: Effect of vector size on flop rate for VecDot (left) and VecAXPY (right), on the CPU and GPUs
with one MPI rank per GPU, scaled by the number of CPU cores or GPUs.

Figure 10 compares the achieved throughput for setting a vector to a constant value and copying vectors,
including copying from CPU to GPU.
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Figure 10: Effect of vector size on VecSet (left) and vector copy (right) throughput.

4 Discussion

The performance of the basic vector operations can be modeled with

t = latency + (1/bandwidth) ∗ size.

In Table 1 and Table 2 we show the computed (via least squares) latency and bandwidth pairs for each
operation for a single GPU and one CPU core. We find that operations on a single GPU follow this simple
linear latency/bandwidth model for large vectors, the behavior for small vectors is depicted in Figure 11. For
small vectors performance is completely determined by latency. Counter intuitively, working with slightly
larger vectors takes (slightly) less time than shorter vectors. This odd behavior is because the GPU has
thousands of computational units and until they are all occupied no additional time is needed for additional
computations that simply occupy some of the unoccupied units.

Vec size 103 - 105 105 - 107 107 - 108

Operation latency bandwidth latency bandwidth latency bandwidth
VecDot 90 - 64 110,000 66 111,000
VecAXPY 47 - 29 100,000 44 106,000
VecSet - - 15 106,000 22 113,000
VecCopy - - 18 88,000 36 99,000
Copy to GPU 19 3,100 86 3,300 269 2,600

Table 1: Latency (10−6 seconds) and bandwidth (8 Mbytes/second) for vector operations on 1 GPU.

Vec size 103 - 105 105 - 107 107 - 108

Operation latency bandwidth latency bandwidth latency bandwidth
VecDot 4 3,900 -119 2,500 -356 2,400
VecAXPY 2 5,600 79 3,500 -525 3,400
VecSet -1 8,000 -316 2,800 -2,508 2,400
VecCopy 0 7,200 -233 3,300 -1,093 3,200

Table 2: Latency (10−6 seconds) and bandwidth (8 Mbytes/second) for vector operations on 1 CPU core.
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Figure 11: GPU performance on small vectors 103 to 106.

Operations on one CPU core do not follow one linear model for all vector sizes. We fit the latency and
bandwidth to different regimes in Table 2. Some of the latencies and bandwidths computed are actually
negative, this showing the limitations of the simple linear model. But even those values provide some useful
information. Note that the latency and bandwidth computations for the CPU cores are determined for a
single core (not seven as in the earlier plots), this is to make getting the timings simpler and more accurate
since it is not possible to launch the seven cores computation simultaneously. Note that one cannot just
compare the bandwidth numbers in two tables directly; one must multiple by six for the total GPUs and
around nine (this is the point at which the bandwidth on the CPUs are saturated) for the CPU cores

For a given size vector the throughput can be computed as

throughput(size) = size/time =
size

latency + (1/bandwidth) ∗ size.

This model can explain the shape of the curves in Figure 2 and many of the other figures. The higher the
latency the more the curve shifts to the right. A negative latency indicates the curve is less than linear.
This, for example, occurs on the CPU cores as the vectors become larger than the cache size, the throughput
is dropping with increased vector sizes.

For large vector sizes, the total flop rate over six GPUs for VecACPY is about 20 times faster than for
42 POWER9 cores. See Figure 4 with a vector size of 108.

The performance of the vector operations on the GPU are affected by a variety of latencies. These include

• CPU to GPU launch latency – 8 microseconds1

• GPU kernel launch time – 16 microseconds1

• Main GPU memory access latency

• Occupancy of all of the thousands of compute units

From Figure 11 and Table 1 the VecDot latencies are 90 and then 66 microseconds, for VecAXPY they are
46 and 44 microseconds. (We don’t understand why the latencies are higher for the dot product). The kernel
launch latency gets a great deal of blame for poor GPU performance but from these numbers it is clearly
not the only cause of the low performance for small vectors. Figure 12 shows the data provided initially
in this report (Figure 2) but with the launch latencies subtracted out from the time (resulting in higher
throughputs). This figure demonstrates that though these latencies are problematic, removing them does
not drastically improve the performance.

1Determined by a simple program that measures the latency for a no-op kernel

12



Figure 12: Projected performance without 24 microsecond latency.

Notes and observations:

• From Table 1 and the numbers above one sees the latency for small vectors on the CPU is significantly
smaller than for the GPU. About 20 times lower.

• GPU virtualization has little impact on performance of the GPU computations. For codes that contain
a significant portion of CPU computations it then makes sense to use many or all of the CPU cores as
MPI ranks and have them share the virtualized GPUs. Since the achieved throughput for copies from
the CPU to GPU increases rapidly when using two MPI ranks per GPU instead of one, for codes that
require significant communication between the CPUs and GPUs, virtualization also makes sense.

• For these results PETSc 3.11 was with built with CUDA version 10.1.168 and PGI compilers version
19.4.

• The bandwidth numbers for communication between the CPUs and the GPUs are significantly below
the hardware peak and those reported by OLCF (using custom code). We have no explanation for
this.

• We do not measure the throughput directly between GPUs since PETSc currently has no mechanism
to utilize this hardware.

• The codes used for the measurements in this report are available in the PETSc repository. They are
in src/vec/vec/examples/tutorials/performance.c
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