<div dir="ltr">Interesting, nice work.<div><br></div><div>It would be interesting to get the flop counters working.</div><div><br></div><div>This looks like GMG, I assume 3D.</div><div><br></div><div>The degree of parallelism is not very realistic. You should probably run a 10x smaller problem, at least, or use 10x more processes. I guess it does not matter. This basically like a one node run because the subdomains are so large.</div><div><br></div><div>And are you sure the numerics are the same with and without hypre? Hypre is 15x slower. Any ideas what is going on?</div><div><br></div><div>It might be interesting to scale this test down to a node to see if this is from communication.</div><div><br></div><div>Again, nice work,</div><div>Mark</div><div><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Thu, Apr 11, 2019 at 7:08 PM Fande Kong <<a href="mailto:fdkong.jd@gmail.com">fdkong.jd@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr">Hi Developers,<br><div><br></div><div>I just want to share a good news.  It is known PETSc-ptap-scalable is taking too much memory for some applications because it needs to build intermediate data structures.  According to Mark's suggestions, I implemented the  all-at-once algorithm that does not cache any intermediate data. </div><div><br></div><div>I did some comparison,  the new implementation is actually scalable in terms of the memory usage and the compute time even though it is still  slower than "ptap-scalable".   There are some memory profiling results (see the attachments). The new all-at-once implementation use the similar amount of memory as hypre, but it way faster than hypre.</div><div><br></div><div>For example, for a problem with 14,893,346,880 unknowns using 10,000 processor cores,  There are timing results:</div><div><br></div><div>Hypre algorithm:</div><div><br></div><div><div>MatPtAP               50 1.0 3.5353e+03 1.0 0.00e+00 0.0 1.9e+07 3.3e+04 6.0e+02 33  0  1  0 17  33  0  1  0 17     0</div><div>MatPtAPSymbolic       50 1.0 2.3969e-0213.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0</div><div>MatPtAPNumeric        50 1.0 3.5353e+03 1.0 0.00e+00 0.0 1.9e+07 3.3e+04 6.0e+02 33  0  1  0 17  33  0  1  0 17     0</div></div><div><br></div><div>PETSc scalable PtAP:</div><div><br></div><div>MatPtAP               50 1.0 1.1453e+02 1.0 2.07e+09 3.8 6.6e+07 2.0e+05 7.5e+02  2  1  4  6 20   2  1  4  6 20 129418</div><div>MatPtAPSymbolic       50 1.0 5.1562e+01 1.0 0.00e+00 0.0 4.1e+07 1.4e+05 3.5e+02  1  0  3  3  9   1  0  3  3  9     0</div><div>MatPtAPNumeric        50 1.0 6.3072e+01 1.0 2.07e+09 3.8 2.4e+07 3.1e+05 4.0e+02  1  1  2  4 11   1  1  2  4 11 235011</div><div><br></div><div>New implementation of the all-at-once algorithm:</div><div><br></div><div><div>MatPtAP               50 1.0 2.2153e+02 1.0 0.00e+00 0.0 1.0e+08 1.4e+05 6.0e+02  4  0  7  7 17   4  0  7  7 17     0</div><div>MatPtAPSymbolic       50 1.0 1.1055e+02 1.0 0.00e+00 0.0 7.9e+07 1.2e+05 2.0e+02  2  0  5  4  6   2  0  5  4  6     0</div><div>MatPtAPNumeric        50 1.0 1.1102e+02 1.0 0.00e+00 0.0 2.6e+07 2.0e+05 4.0e+02  2  0  2  3 11   2  0  2  3 11     0</div></div><div><br></div><div><br></div><div>You can see here the all-at-once is a bit slower than ptap-scalable, but it uses only much less memory.   </div><div><br></div><div><br></div><div>Fande</div><div> </div></div></div></div></div></div></div>
</blockquote></div>