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High-quality ordinary differential equation (ODE) solver library packages have a long history, going back

to the 1970s. Over the past several years we have implemented a new general-purpose, extensive, extensible
ODE and differential algebraic equation (DAE) solver library on top of the PETSc linear and nonlinear

solver package. This package includes support for both forward and adjoint sensitivities that can be easily

utilized by the TAO optimization package, which is also part of PETSc. The ODE/DAE integrator library
strives to be highly scalable but also deliver high efficiency for modest-sized problems. The library includes

explicit solvers, implicit solvers, and a collection of implicit-explicit solvers all with a common user interface
and runtime selection of solver types, adaptive error control, and monitoring of solution progress. The

library also offers enormous flexibility in selection of nonlinear and linear solvers, including the entire suite

of PETSc iterative solvers, as well as several parallel direct solvers.

Categories and Subject Descriptors: G.1.7 [Numerical Analysis]: Ordinary Differential Equations—
Boundary value problems, Convergence and stability, Differential-algebraic equations, Error analysis, Ini-
tial value problems, Multistep and multivalue methods

General Terms: Algorithm, Performance

Additional Key Words and Phrases: ODEs, DAEs

1. INTRODUCTION
Sophisticated numerical algorithms for the integration of ordinary differential equa-
tions (ODEs) and differential algebraic equations (DAEs) have existed for well over one
hundred years, while general-purpose software libraries for their solution have existed
for at least forty years. With changes in the applications simulated and in the com-
puter hardware, such libraries are constantly evolving. Perhaps the best-known such
libraries for both ODEs and DAEs are those originating at Lawrence Livermore Na-
tional Laboratory, including VODE, CVODE, DASSL, and SUNDIALS [Petzold 1992;
Hindmarsh et al. 2005]. Other libraries with ODE/DAE support include Trilinos [Her-
oux et al. 2003], as well as commercial codes such as MATLAB [2014] and NAG [2018].
The theory of numerical algorithms for ODEs and DAEs is covered in several mono-
graphs, including [Hairer et al. 2008; Hairer and Wanner 2002; Ascher and Petzold
1998; Brenan et al. 1996; Butcher 2008].

The Portable, Extensible Toolkit for Scientific computation (Version 2.0), PETSc, was
developed to provide scalable high-quality mathematical libraries for distributed mem-
ory parallel computing. Over the past several years we have implemented a general-
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purpose, extensive, extensible ODE and DAE integrator package with local and global
error control, support for computing sensitivities, and handling of events (discontinu-
ities in solutions or parameters). In this paper we describe the design, properties, and
usage of the ODE/DAE integrators in PETSc. The document is organized as follows. In
Section 2 we introduce the organization of PETSc, followed in Section 3 by the PETSc
time-stepping application programming interface (API) and in Section 4 by the time
integration schemes in PETSc. In Section 5 we discuss adaptive time stepping and er-
ror control and in Section 6 the computation of sensitivities. In Section 7 we explain
how events are handled and the tools for monitoring and visualizing solutions and
the solution process. In Section 8 we discuss how PETSc handles discontinuities and
events. We conclude in Section 9 with a brief summary of two high-level interfaces for
accessing the ODE/DAE integrators: one for networks (for example the power grid)
and one for chemical reactions.

2. BACKGROUND: PETSC LINEAR AND NONLINEAR SOLVERS
PETSc is a scalable, MPI-based, object-oriented numerical software library written in
C and fully usable from C, C++, Fortran, and Python. See [Balay et al. 1997] for details
on its design and the users manual [Balay et al. 2017] for how to use PETSC effectively.
PETSc has several fundamental classes from which applications are composed.

— IS – index sets used to index into vectors and matrices, an abstraction of a list of
integers

— Vec – vectors, abstract elements of Rn, used to contain the ODE solutions, function
evaluations, and so forth

— Mat – matrices, representations of linear operations including matrix-free formula-
tions and sparse and dense storage formats

— PC – preconditioners, single-step iterative solvers including domain decomposition
and algebraic and geometric multigrid as well as direct solvers such as LU

— KSP – Krylov subspace solvers, multistep iterative solvers
— SNES – nonlinear solvers, including Newton’s method, quasi-Newton methods, and

nonlinear Krylov methods

In addition PETSc has a variety of helper classes that are useful for implicit ODE
solvers, these include MatColoring and MatFDColoring, which are used to efficiently
compute Jacobians via finite difference; see Section 3. Moreover, PETSc has an ab-
stract class DM that serves as an adapter between meshes, discretizations, and other
problem descriptors and the algebraic and time-stepper objects that are used to solve
the discrete problem.

PETSc takes a minimalist approach to public APIs, attempting to keep them as
small as possible and with as little overlap in functionalities as possible. In addi-
tion PETSc provides both a programmatic interface to almost all functionalities within
PETSc as well as a simple string-based system, called the options database, that al-
lows runtime control of almost all functionality in PETSc.

Because PETSc is written in C, which does not have native syntax to create classes
and class hierarchies of object-oriented languages, the classes are managed “manu-
ally” by the use of C structs and function pointers. One feature of this approach, which
can also be obtained in object-oriented languages through the use of delegators, is that
any object can be changed at runtime, even multiple times during the run to different
derived classes of the same base class. For example, a linear solver object that uses
the GMRES method can later be changed to use Bi-CG-stab by simply resetting the
solver type, without the need for factory classes. Many PETSc functions have optional
arguments; since C does not support function overloading, one passes PETSC DEFAULT
(for optional scalar arguments) and NULL (for optional array arguments). In order to
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allow changing basic type sizes at compile time PETSc has its own types: PetscReal,
which can represent half-precision, single, double, or quad precision floating point;
PetscScalar which represents complex values when PETSc is built with complex num-
bers; and PetscInt which represents either 32 or 64 bit integers. Since PETSc is writ-
ten in C, we cannot utilize templates for this purpose as would be done in C++.

The usage of PETSc objects generally proceeds in the following order.

— XXXCreate(MPI Comm comm,XXX *xxx) creates an object of type XXX, for example,
KSPCreate(MPI comm,KSP*) creates a Krylov solver object.

— XXXSetYYY(XXX xxx,...) sets options to the object, via the functional interface.
— XXXSetType(XXX xxx,const char* typename) sets the specific subclass of the object,

for example, “gmres” is a subclass of KSP.
— XXXSetFromOptions(XXX xxx) allows setting the type and options of the object from

the options database.
— XXXSetYYY(XXX xxx,...) sets additional options,
— XXXSetUp(XXX xxx) fully instantiates the object so that it is ready to be used
— XXXDestroy(XXX *xxx) frees all the space being used by the solver. PETSc uses ref-

erence counting to ensure that objects referenced by multiple other objects are not
prematurely destroyed.

We present full examples of this approach below for the ODE/DAE solvers.

3. PETSC TIME-STEPPING APPLICATION PROGRAMMING INTERFACE
The PETSc interface for solving time-dependent problems is organized around the fol-
lowing form of a DAE:

F (t, u, u̇) = G(t, u), u(t0) = u0.

If the matrix Fu̇(t) = ∂F/∂u̇ is nonsingular, then the equation is an ODE and can
be transformed to the standard explicit form (u̇ = Q(t, u)). This transformation may
not lead to efficient algorithms, so often the transformation to explicit form should be
avoided. For ODEs with nontrivial mass matrices such as those that arise in the finite
element method, the implicit/DAE interface can significantly reduce the overhead to
prepare the system for algebraic solvers by having the user assemble the correctly
shifted matrix. This interface is also useful for ODE systems, not just DAE systems.

To solve an ODE or DAE one uses the timestep context TS created with
TSCreate(comm,&ts) and then allows the user to set options from the options database
with TSSetFromOptions(ts). To define the ODE/DAE, the user needs to provide one
or more functions (callbacks). The TS API for providing these functions consists of the
following.

— Function F (t, u, u̇) is provided, by the user, with
1 TSSetIFunction(TS ts,Vec r, (*f)(TS,PetscReal ,Vec ,Vec ,Vec ,void*),void *fP);

The vector r is an optional location to store the residual. The arguments to the func-
tion f() are the timestep context, current time, input state u, input time deriva-
tive u̇, and the (optional) user-provided context *fP that contains data needed by the
application-provided call-back routines. . When only G(t, u) is provided, TS automat-
ically assumes that F (t, u, u̇) = u̇.

— Function G(t, u), if it is nonzero, is provided, by the user, with
TSSetRHSFunction(TS ts,Vec r,(*g)(TS,PetscReal ,Vec ,Vec ,void*),void *gP);

Again the vector r is an optional location to store the residual. The arguments to the
function g() are the timestep context, current time, input state u, and the (optional)
user-provided context *gP.
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— Jacobian Fu + (shift)Fu̇

If using a fully implicit or semi-implicit (IMEX) method, one also must provide an
appropriate (approximate) Jacobian matrix of F () at the current solution un using
TSSetIJacobian(TS ts ,Mat A,Mat B,

(*j)(TS,PetscReal ,Vec ,Vec ,PetscReal ,Mat ,Mat ,void*),void *jP);

The arguments of j() are the timestep context; current time; input state u; input
derivative u̇; shift (described below); matrix A (which defines the Jacobian); ma-
trix B, which is optionally different from A (from which the preconditioner is con-
structed); and the (optional) user-provided context jP.
This form for the Jacobian arises because for all implicit and semi-implicit time inte-
grators in PETSc the value of u̇n is approximated in the ODE/DAE solver algorithms
by (shift)un+q(un−1, ...), where the method-specific function q(un−1, ...) depends only
on previous iterations. Hence

dF

dun
=

∂F

∂u̇n
∂u̇n

∂un
+
∂F

∂un

= (shift)Fu̇n(tn, un, u̇n) + Fun(tt, un, u̇n).

For example, the backward Euler method u̇n = (un− un−1)/∆t. With F (un) = Mu̇n−
f(t, un)one obtains the expected Jacobian

dF

dun
=

∂(Mu̇n)

∂u̇n
∂u̇n

∂un
− ∂f

∂un

=
1

∆t
M − fun(t, un).

In this case the value of shift is 1/∆t.
— Jacobian Gu

If using a fully implicit method and the function G() is provided, one must also pro-
vide an appropriate (approximate) Jacobian matrix of G() using
TSSetRHSJacobian(TS ts,Mat A,Mat B,

(*gj)(TS,PetscReal ,Vec ,Mat ,Mat ,void*),void *gjP);

The arguments for the function gj() are the timestep context, current time, input
state u, matrix A, optional matrix B from which the preconditioning is constructed,
and the (optional) user-provided context gjP.

Providing appropriate F () and G() and their derivatives for the problem allows for
easy runtime switching between explicit, semi-implicit, and fully implicit method.

Providing correctly coded Jacobians is often a major stumbling block for users of
ODE/DAE integration packages. PETSc provides three useful tools to help users in
this process:

— application of Jacobians via matrix-free differencing approaches,
— explicit computation of Jacobians via matrix coloring and differencing, and
— automatic testing of user-provided Jacobian computations.

Finite-difference-based matrix-free application of Jacobians is handled with a special
PETSc matrix class that never forms the matrix entries explicitly but merely pro-
vides matrix-vector products. For most situations the user simply provides the option
-snes mf, which uses the PETSc provided matrix-free matrix class, and either no pre-
conditioner or a user-provided preconditioner or -snes mf operator, where a standard
preconditioner is constructed from some user-provided approximation to the Jacobian.
Users who desire more control over the process can utilize

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



A:5

1 MatCreateMFFD(MPI_Comm ,PetscInt m, PetscInt n,PetscInt M,PetscInt N,Mat *J)
2 MatMFFDSetFunction(Mat J,(*f)(void*,Vec ,Vec),void *ctx)

The arguments of MatCreateMFFD() are the local and global dimensions of the opera-
tor, while the arguments of MatMFFDSetFunction() include the nonlinear function and
optional user-provided context data. A simpler alternative uses the nonlinear function
already provided to the nonlinear solver with

1 TSGetSNES(TS ts,SNES *snes)
2 MatCreateSNESMF(SNES snes ,Mat *J)

An explicit matrix representation of the Jacobian via matrix coloring may be con-
structed by using the option -snes fd color. The coloring can be provided in com-
plementary ways, either by providing the nonzero structure of the Jacobian (but not
its numerical values) and applying a variety of matrix coloring routines to compute
the coloring (this is done by creating a coloring object with MatColoringCreate()
and from this performing the coloring) or by providing the coloring based on the
mesh structure and specific numerical discretization approach used (this is done
by calling DMCreateColoring()). Once the coloring is provided, the actual com-
putation of the Jacobian entries involves the use of MatFDColoringCreate() and
MatFDColoringSetFunction(), which plays a role similar to MatMFFDSetFunction().
Both the matrix-free differencing and the explicit computation of the Jacobian en-
tries support various options for selecting the differencing parameters. The explicit
computation of Jacobian entries via differencing can be used to find the locations
of Jacobian entries incorrectly provided by the user. In the simplest case this is
handled via the option -snes type test -snes test display. Other options include
-snes compare coloring and -snes compare coloring display.

We now present a complete simple example code demonstrating the use of TS to
solve a small set of ODEs: u̇0 = −κu0u1, u̇1 = −κu0u1 u̇2 = κu0u1, u0 = [1.0, 0.7, 0.0]T .

1 /* Defines the ODE passed to the ODE solver */
2 IFunction(TS ts,PetscReal t,Vec U,Vec Udot ,Vec F,AppCtx *ctx){
3 PetscScalar *f;
4 const PetscScalar *u,*udot;
5
6 /* Allow access to the vector entries */
7 VecGetArrayRead(U,&u); VecGetArrayRead(Udot ,&udot); VecGetArray(F,&f);
8 f[0] = udot [0] + ctx ->k*u[0]*u[1];
9 f[1] = udot [1] + ctx ->k*u[0]*u[1];

10 f[2] = udot [2] - ctx ->k*u[0]*u[1];
11 VecRestoreArrayRead(U,&u); VecRestoreArrayRead(Udot ,&udot);
12 VecRestoreArray(F,&f);
13 }
14 /* Defines the Jacobian of the ODE passed to the ODE solver. */
15 IJacobian(TS ts,PetscReal t,Vec U,Vec Udot ,PetscReal a,Mat A,Mat B,AppCtx *

ctx){
16 PetscInt rowcol [] = {0,1,2};
17 PetscScalar J[3][3];
18 const PetscScalar *u,*udot;
19
20 VecGetArrayRead(U,&u); VecGetArrayRead(Udot ,&udot);
21 J[0][0] = a + ctx ->k*u[1]; J[0][1] = ctx ->k*u[0]; J[0][2] = 0.0;
22 J[1][0] = ctx ->k*u[1]; J[1][1] = a + ctx ->k*u[0]; J[1][2] = 0.0;
23 J[2][0] = -ctx ->k*u[1]; J[2][1] = -ctx ->k*u[0]; J[2][2] = a;
24 MatSetValues(B,3,rowcol ,3,rowcol ,&J[0][0] , INSERT_VALUES);
25 VecRestoreArrayRead(U,&u); VecRestoreArrayRead(Udot ,&udot);
26 MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
27 MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
28 }
29 /* Defines the initial conditions (and the analytic solution) */
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30 Solution(TS ts,PetscReal t,Vec U,AppCtx *ctx){
31 const PetscScalar *uinit;
32 PetscScalar *u,d0 ,q;
33
34 VecGetArrayRead(ctx ->initialsolution ,&uinit); VecGetArray(U,&u);
35 d0 = uinit [0] - uinit [1];
36 if (d0 == 0.0) q = ctx ->k*t;
37 else q = (1.0 - PetscExpScalar(-ctx ->k*t*d0))/d0;
38 u[0] = uinit [0]/(1.0 + uinit [1]*q);
39 u[1] = u[0] - d0;
40 u[2] = uinit [1] + uinit [2] - u[1];
41 VecRestoreArrayRead(ctx ->initialsolution ,& uinit); VecRestoreArray(U,&u);
42 }
43 /* Creates the TS object , sets functions , options , then solves the ODE */
44 int main(int argc ,char **argv){
45 TS ts; /* ODE integrator */
46 Vec U; /* solution will be stored here */
47 Mat A; /* Jacobian matrix */
48 PetscInt n = 3;
49 AppCtx ctx;
50
51 PetscInitialize (&argc ,&argv ,(char*)0,help);
52 /* Create necessary matrix and vectors */
53 MatCreate(PETSC_COMM_WORLD ,&A);
54 MatSetSizes(A,n,n,PETSC_DETERMINE ,PETSC_DETERMINE);
55 MatSetFromOptions(A); MatSetUp(A);
56 MatCreateVecs(A,&U,&ctx.initialsolution);
57 /* Set runtime option */
58 ctx.k = .9;
59 PetscOptionsGetScalar(NULL ,NULL ,"-k",&ctx.k,NULL);
60 /* Create timestepping solver context */
61 TSCreate(PETSC_COMM_WORLD ,&ts);
62 TSSetProblemType(ts,TS_NONLINEAR);
63 TSSetType(ts,TSROSW);
64 TSSetIFunction(ts ,NULL ,( TSIFunction) IFunction ,&ctx);
65 TSSetIJacobian(ts ,A,A,( TSIJacobian)IJacobian ,&ctx);
66 /* Set initial conditions */
67 Solution(ts ,0,U,&ctx);
68 /* Set solver options */
69 TSSetTimeStep(ts ,.001);
70 TSSetMaxSteps(ts ,1000);
71 TSSetMaxTime(ts ,20.0);
72 TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);
73 TSSetFromOptions(ts);
74 TSMonitorLGSetVariableNames(ts,names);
75
76 TSSolve(ts,U);
77
78 VecDestroy (&ctx.initialsolution); MatDestroy (&A); VecDestroy (&U);
79 TSDestroy (&ts);
80 PetscFinalize ();
81 }

We now present a complete simple example code demonstrating the use of TS to
solve a small set of stiff ODEs written in Python and using the petsc4py binding:

u̇0 = −77.27(u1 + u0(1− 8.375× 10−6u0 − u1),

u̇1 =
1

77.27
(u2 − (1 + u0)u1),

u̇2 = 0.161(u0 − u2),

u(t = 0) = [1.0, 2.0, 3.0]T .
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Oregonator: stiff 3-variable oscillatory ODE system from chemical reactions, prob-
lem OREGO in [Hairer and Wanner 2002].

import sys , petsc4py
from matplotlib import pylab
from matplotlib import rc

4 import numpy as np
petsc4py.init(sys.argv)

from petsc4py import PETSc

9 class Orego(object):
n = 3
comm = PETSc.COMM_SELF
def evalSolution(self , t, x):

x.setArray ([1, 2, 3])
14 def evalFunction(self , ts, t, x, xdot , f):

f.setArray ([xdot [0] - 77.27*(x[1] + x[0]*(1 - 8.375e-6*x[0] - x[1])),
xdot [1] - 1/77.27*(x[2] - (1 + x[0])*x[1]),
xdot [2] - 0.161*(x[0] - x[2])])

def evalJacobian(self , ts, t, x, xdot , a, A, B):
19 B[:,:] = [[a - 77.27*((1 - 8.375e-6*x[0] - x[1]) -8.375e-6*x[0]),

-77.27*(1 - x[0]), 0],
[1/77.27*x[1], a + 1/77.27*(1 + x[0]), -1/77.27] ,
[-0.161, 0, a + 0.161]]

B.assemble ()
24 if A != B: A.assemble ()

return True # same nonzero pattern

OptDB = PETSc.Options ()
ode = Orego()

29
J = PETSc.Mat().createDense ([ode.n, ode.n], comm=ode.comm)
J.setUp()
x = PETSc.Vec().createSeq(ode.n, comm=ode.comm); f = x.duplicate ()

34 ts = PETSc.TS().create(comm=ode.comm)
ts.setType(ts.Type.ROSW) # use Rosenbrock -W method

ts.setIFunction(ode.evalFunction , f)
ts.setIJacobian(ode.evalJacobian , J)

39
history = []
def monitor(ts , i, t, x):

xx = x[:]. tolist ()
history.append ((i, t, xx))

44 ts.setMonitor(monitor)

ts.setTime (0.0)
ts.setTimeStep (0.1)
ts.setMaxTime (360)

49 ts.setMaxSteps (2000)
ts.setExactFinalTime(PETSc.TS.ExactFinalTime.INTERPOLATE)
ts.setMaxSNESFailures (-1) # allow unlimited failures (step will be retried)

# Set a different tolerance on each variable.
54 vatol = x.duplicate(array =[1e-2, 1e-1, 1e-4])

ts.setTolerances(atol=vatol ,rtol=1e-3) # adaptive controller attempts to
match this tolerance

snes = ts.getSNES () # Nonlinear solver
snes.setTolerances(max_it =10) # Stop nonlinear solve after 10 iterations

(TS will retry with shorter step)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8

59 ksp = snes.getKSP () # Linear solver
ksp.setType(ksp.Type.PREONLY) # No Krylov method
pc = ksp.getPC () # Preconditioner
pc.setType(pc.Type.LU) # Use a direct solve

64 ts.setFromOptions () # Apply run -time options , e.g.
-ts_adapt_monitor -ts_type arkimex -snes_converged_reason

ode.evalSolution (0.0, x)
ts.solve(x)

if OptDB.getBool(’plot_history ’, True):
69 ii = np.asarray ([v[0] for v in history ])

tt = np.asarray ([v[1] for v in history ])
xx = np.asarray ([v[2] for v in history ])

rc(’text’, usetex=True)
74 pylab.suptitle(’Oregonator: TS \\ texttt {%s}’ % ts.getType ())

pylab.subplot (2,2,1)
pylab.subplots_adjust(wspace =0.3)
pylab.semilogy(ii[:-1], np.diff(tt), )
pylab.xlabel(’step number ’)

79 pylab.ylabel(’timestep ’)

for i in range (0,3):
pylab.subplot (2,2,i+2)
pylab.semilogy(tt, xx[:,i], "rgb"[i])

84 pylab.xlabel(’time’)
pylab.ylabel(’$x_%d$’ % i)

pylab.show()

In figure 1 we show show the output of the OREGO Python code. We have also per-
formed a work-precision diagram illustrating the effect of choosing different tolerances
in the TSAdapt (see §5) on the amount of effort and precision.

Fig. 1. Oregonator output and work-precision diagram for three Rosenbrock-W methods (§4.2) under differ-
ent TSAdapt tolerances (10−1, . . . , 10−5).

4. TIME-STEPPING SCHEMES
This section describes the interfaces for setting the time-stepping schemes and their
options. The classes of methods currently implemented in PETSc are described in Ta-
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ble I. They cover multistage, multistep, and general linear methods with different
stability properties. To address different problem requirements, PETSc provides ex-
plicit methods that are fast and accurate, implicit methods that have robust stability
properties, and partitioned methods that combine both implicit and explicit integra-
tors. Many of the methods implemented in PETSc allow users to register new schemes
by supplying a new set of method coefficients. Most methods offer local error control.
Global error estimation is also supported for several integrators. When implicit and
semi-implicit methods are used, any of the PETSc linear and nonlinear solvers can
be selected either by calling functions within the program or via the PETSc options
database. These are fully described in the PETSc users manual [Balay et al. 2017].
The methods are summarized in Table I. The following list details some of the meth-
ods and their properties.

— euler Explicit Euler method. This is a basic implementation of the simplest time
integrator.

— ssp Class of strong-stability-preserving multistage explicit methods suitable for hy-
perbolic partial differential equations (PDEs).

— beuler, cn, theta low-order implicit methods. These are suitable for DAEs and when
stability is a concern.

— alpha(2) Time stepping developed for Navier-Stokes problems [Jansen et al. 2000].
— glle Implementation of implicit general linear methods for stiff problems.
— rk Implementation of explicit Runge-Kutta methods.
— eimex Implementation of extrapolated partitioned Runge-Kutta methods. These

methods can have arbitrarily high orders [Constantinescu and Sandu 2010].
— arkimex Implementation of additive partitioned Runge-Kutta methods. These are

suitable for problems with stiff and nonstiff components.
— rosw Implementation of Rosenbrock and W-methods, linearly implicit multistage

methods with full or approximated Jacobian matrices. These methods are suitable
for stiff, mildly nonlinear problems.

— glee Explicit and implicit general linear methods; typically self-starting, with global
error estimation [Constantinescu 2018]. With suitable coefficients, these methods
include ’euler’, ’beuler’, ’cn’, ’theta’, ’ssp’, and ’rk’.

— bdf Standard backward differentiation methods. These are relatively low-order im-
plicit multistep methods suitable for stiff problems and DAEs.

Explicit methods are conditionally stable. Implicit methods can be conditionally or
unconditionally stable. Unconditional stability can be stronger or weaker. In this study
we distinguish two types of stability: A-Stable methods, which have a stability region
that covers the entire real-negative complex half plane, and L-Stable or stiffly accurate
(SA) methods, which are A-Stable methods for which the amplification factor goes to
zero as stiffness goes to infinity, thus giving them better stability properties for stiff
problems and DAEs.

4.1. Partitioned Runge-Kutta
Partitioned methods are aimed at relaxing ODE integrator classification into strictly
stiff and nonstiff problems that may have both types of characteristics. Partitioned
methods employ two types of integrators: an explicit integrator for the nonstiff prob-
lem components and an implicit integrator suitable for the stiff ones [Ascher et al.
1997; Kennedy and Carpenter 2003]. Partitioned Runge-Kutta methods are typically
strongly coupled; that is, both integrators participate in each stage calculation. In the
literature these methods are known as implicit-explicit or semi-implicit [Giraldo et al.
2013; Zhong 1996].
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Table I. List of time integration schemes available in the TS component of PETSc.

TS Name Reference Class Type Order
euler forward Euler one-step explicit 1
ssp multistage SSP [Ketcheson

2008]
Runge-Kutta explicit ≤ 4

beuler backward Euler one-step implicit 1
cn Crank-Nicolson one-step implicit 2

theta theta-method one-step implicit ≤2
alpha(2) alpha-method [Jansen

et al. 2000]
one-step implicit 2

glle general linear [Butcher
et al. 2007]

general linear implicit ≤ 3

eimex extrapolated IMEX [Con-
stantinescu and Sandu
2010]

one-step ≥ 1, adaptive

arkimex §4.1 IMEX Runge-Kutta IMEX 1− 5
rosw §4.2 Rosenbrock-W linearly implicit 1− 4
glee method with global error

estimation [Constanti-
nescu 2018]

general linear explicit/implicit 1− 4

bdf standard BDF methods
[Brenan et al. 1996]

multistep implicit 1− 6

A typical additive partitioning of an ODE problem results in the following:

u̇ = G(t, u)︸ ︷︷ ︸
U̇E

+H(t, u)︸ ︷︷ ︸
U̇I

, (1)

where U̇E denotes the nonstiff RHSFunction and F (t, u, u̇) = u̇− U̇I the stiff IFunction
in PETSc. Integrating this problem explicitly in G and implicitly in F from un to un+1

by an additive Runge-Kutta (ARK) method defined by coefficients (A = {aij}, b, c) for
the explicit part and (Ã, b̃, c̃) for the implicit part is

U (i) = un + ∆t

i−1∑
j=1

aijU̇
(j)
E + ∆t

i∑
j=1

ãijU̇
(j)
I , i = 1, . . . , s (2a)

un+1 = un + ∆t

s∑
j=1

bjU̇
(j)
E + ∆t

s∑
j=1

b̃jU̇
(j)
I , (2b)

where A = {aij} is strictly lower triangular, Ã = {ãij} is lower triangular and can have
zeros on the diagonal (these correspond to explicit stages), and ◦(i) is stage index i.
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The implementation of the standard IMEX scheme is as follows. Solve for U (i):

F

(
tn + ci∆t, U

(i),
1

∆tãii

(
U (i) − Z

))
= 0 , (3a)

Z = un + ∆t

i−1∑
j=1

ãijU̇
(j)
I + ∆t

i−1∑
j=1

aijU̇
(j)
E (3b)

U̇
(i)
I =

1

∆tãii

(
U (i) − Z

)
, U̇

(i)
E = G

(
tn + ci∆t, U

(i)
)
, i = 1, . . . , s (3c)

un+1 = un + ∆t

s∑
j=1

bjU̇
(j)
E + ∆t

s∑
j=1

b̃jU̇
(j)
I . (3d)

If ãii = 0, then (3a) is skipped, and (3c) is modified. This approach allows direct use of
these schemes for different types of problems as expressed in Table II.

Lower-order approximations are computed in the same way as for RK and ARK
methods by evaluating (2b) with different b and b̃ coefficients.

If one calls TSARKIMEXSetFullyImplicit() or use the option
-ts imex fully implicit, then (3a) solves F (t, u, u̇) = G(t, u) by using only the
implicit integrator, and thus turning the time-stepping procedure into a diagonally
implicit integrator. This facilitates solving DAEs and implicit ODEs. A summary of
casting different problems through the partitioned additive interface is given in Table
II. An IMEX formulation for problems such as Mu̇ = g(t, u) + h(t, u) requires the user
to provide M−1g(t, u). General cases such as F (t, u, u̇) = G(t, u) are not amenable to
IMEX Runge-Kutta but can be solved by using fully implicit methods, that is, by using
the -ts imex fully implicit option.

Table II. In PETSc, DAEs and ODEs are formulated as F (t, u, u̇) = G(t, u), where F () is meant to be integrated
implicitly and G() explicitly.

u̇ = g(t, u) nonstiff ODE F (t, u, u̇) := u̇, G(t, u) := g(t, u)
u̇ = h(t, u) stiff ODE F (t, u, u̇) := u̇− h(t, u), G(t, u) := NULL
Mu̇ = h(t, u) stiff ODE with mass

matrix
F (t, u, u̇) := Mu̇− h(t, u), G(t, u) := NULL

Mu̇ = g(t, u) nonstiff ODE with
mass matrix

F (t, u, u̇) := u̇, G(t, u) := M−1g(t, u)

u̇ = g(t, u) + h(t, u) stiff-nonstiff ODE F (t, u, u̇) := u̇− h(t, u), G(t, u) := g(t, u)
Mu̇ = g(t, u) + h(t, u) stiff-non-stiff ODE

with mass matrix
F (t, u, u̇) := Mu̇ − h(t, u), G(t, u) :=
M−1g(t, u)

h(t, y, ẏ) = 0 implicit ODE/DAE F (t, u, u̇) := h(t, u, u̇), G(t, u) :=
NULL; TSSetEquationType() set to
TS EQ IMPLICIT or higher

The dense output or continuous approximation [] of the solution within one timestep
is also supported. This is used to obtain a high-order interpolation on the one hand
and a hot-start initial guess for the Newton iterations on the other hand. The s∗ ≥ s
dense output formula for IMEX Runge-Kutta schemes of order p∗ is given by

u∗(tn + θ∆t) := un + ∆t

s∗∑
i=1

B∗i (θ)g(tn + ci∆t, U
(i)) + B̂∗i (θ)f(tn + ci∆t, U

(i)) , (4)

where θ ∈ [0, 1], B∗i (θ) =
∑p∗

j=1 b
∗
ijθ

j , and B̂∗i (θ) =
∑p∗

j=1 b̂
∗
ijθ

j . We typically take
b∗ij = b̂∗ij . When θ > 1, the dense output is used for extrapolation. This option is set
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by -ts arkimex initial guess extrapolate and has the effect of setting the initial
guess for all stages based on the dense output extrapolated solution from the previous
step. In nonlinear problems this was shown to accelerate the code by up to three times;
however, the gains are highly problem dependent.

Table III. List of the IMEX RK schemes currently available in the TS component of PETSc. For
each method we list the reference, the total number of stages/implicit stages, the order/stage
order, the implicit stability properties, stiff accuracy (SA), the existence of an embedded scheme,
and dense output.

TS Reference Stages Order IM SA
Name (IM) (stage) Stab.
1bee B Euler + Extrap 3(3) 1(1) L yes
a2 RK2a + Trap. 2(1) 2(2) A yes
l2 SSP2(2,2,2)[Pareschi and Russo 2005] 2(2) 2(1) L yes

ars122 ARS122, [Ascher et al. 1997] 2(1) 3(1) A yes
2c [Giraldo et al. 2013] 3(2) 2(2) L yes
2d [Giraldo et al. 2013] 3(2) 2(2) L yes
2e [Giraldo et al. 2013] 3(2) 2(2) L yes

prssp2 PRS(3,3,2) [Pareschi and Russo 2005] 3(3) 3(1) L
3 [Kennedy and Carpenter 2003] 4(3) 3(2) L yes

bpr3 [Boscarino et al. 2011] 5(4) 3(2) L yes
ars443 [Ascher et al. 1997] 5(4) 3(1) L yes

4 [Kennedy and Carpenter 2003] 6(5) 4(2) L yes
5 [Kennedy and Carpenter 2003] 8(7) 5(2) L yes

TS Embed. Dense Remarks
Name Output
1bee yes(1) no extrapolated BEuler
a2 yes(1) yes(2)
l2 es(1) yes(2) SSP, SDIRK

ars122 yes(1) yes(2)
2c yes(1) yes(2) SDIRK,SSP
2d yes(1) yes(2) SDIRK
2e yes(1) yes(2) SDIRK

prssp2 no no SSP, nonSDIRK
3 yes(2) yes(2) SDIRK

bpr3 no no SDIRK, DAE-1
ars443 no no SDIRK

4 yes(3) yes(2,3) SDIRK
5 yes(4) yes(3) SDIRK

4.2. Rosenbrock
Rosenbrock methods are linearly implicit versions of implicit Runge-Kutta methods.
They use explicit function evaluations and implicit linear solves, and therefore they
tend to be faster than the implicit Runge-Kutta methods because at each stage only
a linear system needs to be solved, as opposed to the implicit Runge-Kutta methods
that require solving a nonlinear system at each stage. An s-stage Rosenbrock method
is defined by coefficient matrices A = aij , j < i and Γ = γi,j , j ≤ i and vector bi,
i = 1, . . . , s. The Rosenbrock scheme applied to u̇ = f(t, u) computes the solution at
step n+ 1 by

ki = ∆tf(tn + ci∆t, un +

i−1∑
j=1

aijkj) + ∆tJ

i∑
j=1

γijkj i = 1, . . . , s (5a)

un+1 = un +

s∑
i=1

biki , (5b)
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where J is the Jacobian matrix of f(t, u) at t = tn and ci =
∑i−1

j=1 aij . Extensions
to DAEs and PDAEs are readily available [Rang and Angermann 2005]. The linear
system is defined in terms of the Jacobian matrix, which can be exact or approximated.
The latter case leads to W-methods.

We follow the implementation suggested in [Rang and Angermann 2005; Kaps et al.
1985] where the coefficient matrix Γ is inverted, and a change of variable is used

vi =

i∑
j=1

γijkj , i = 1, . . . , s ,

leading to the following expressions:(
1

γii∆t
M − J

)
vi = f

tn + ci∆t, vn +

i−1∑
j=1

ωijvj

+
1

∆t
M

i−1∑
j=1

dijvj , i = 1, . . . , s (6a)

un+1 = un +
s∑

j=1

mjvj , (6b)

where {d}ij = diag(γ−111 , . . . , γ
−1
ss )−Γ−1, {ω}ij = AΓ−1, {m}i = bΓ−1, γi =

∑i−1
j=1 γij , and

M is a mass matrix that can be singular, resulting in a DAE. In our implementation we
also allow for a noninvertible Γ coefficient matrix by applying a correction to (6). This
allows us to use methods that have explicit stages. Lower-order approximations are
computed in the same way as for RK and ARK methods by evaluating (5b) with differ-
ent b coefficients. A work-precision diagram with three of these methods is presented
in Fig. 1.

For PDEs, much of the source code is responsible for managing the mesh and spa-
tial discretization, while only a small amount handles the time integration. In PETSc
the bridge between the mass of code that handles the mesh and discretization and
the solver and time integrator is the DM object. This object provides the information
needed by the solvers and integrators while concealing all the details of the mesh
and discretization management. PETSc provides several DM classes including DMDA
for structured grids with finite difference discretizations and DMPLEX for unstructured
meshes with finite element or finite volume discretizations. We present an example
of a PDE discretized on a structured grid using PETSc’s DMDA and time integra-
tors. This example demonstrates an interesting nontrivial pattern formation with a
reaction-diffusion equation.
#include <petscdm.h>
#include <petscdmda .h>
#include <petscts.h>

4
typedef struct {

PetscScalar u,v;
} Field;
typedef struct {

9 PetscReal D1,D2,gamma ,kappa;
} AppCtx;

int main(int argc ,char **argv){
TS ts; /* ODE integrator */

14 Vec x; /* solution */
DM da;
AppCtx appctx;
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Table IV. List of the Rosenbrock W-schemes currently available in the TS component of
PETSc. For each method we listed the reference, the total number of stages and implicit
stages, the scheme order and stage-order, the implicit stability properties, stiff accuracy
(SA), the existence of an embedded scheme, dense output, the capacity to use inexact
Jacobians (-W), and high-order integration of differential algebraic equations (PDAE).

TS Reference Stages Order IM SA
Name (IM) (stage) Stab.
theta1 classical 1(1) 1(1) L -
theta2 classical 1(1) 2(2) A -

2m Zoltan 2(2) 2(1) L No
2p Zoltan 2(2) 2(1) L No

ra3pw [Rang and Angermann 2005] 3(3) 3(1) A No
ra34pw2 [Rang and Angermann 2005] 4(4) 3(1) L Yes
rodas3 [Sandu et al. 1997] 4(4) 3(1) L Yes
sandu3 [Sandu et al. 1997] 3(3) 3(1) L Yes

assp3p3s1c unpublished 3(2) 3(1) A No
lassp3p4s2c unpublished 4(3) 3(1) L No
lassp3p4s2c unpublished 4(3) 3(1) L No

ark3 unpublished 4(3) 3(1) L No
TS Embed. Dense -W PDAE Remarks

Name Output
theta1 - - - -
theta2 - - - - -

2m Yes(1) Yes(2) Yes No SSP
2p Yes(1) Yes(2) Yes No SSP

ra3pw Yes Yes(2) No Yes(3) -
ra34pw2 Yes Yes(3) Yes Yes(3) -
rodas3 Yes No No Yes -
sandu3 Yes Yes(2) No No -

assp3p3s1c Yes Yes(2) Yes No SSP
lassp3p4s2c Yes Yes(3) Yes No SSP
lassp3p4s2c Yes Yes(3) Yes No SSP

ark3 Yes Yes(3) Yes No IMEX-RK

PetscInitialize (&argc ,&argv ,(char*)0,help);
19 appctx.D1 = 8.0e-5;

appctx.D2 = 4.0e-5;
appctx.gamma = .024;
appctx.kappa = .06;
/* Create distributed array (DMDA) to manage parallel grid and vectors */

24 DMDACreate2d(PETSC_COMM_WORLD ,DM_BOUNDARY_PERIODIC ,DM_BOUNDARY_PERIODIC ,
DMDA_STENCIL_STAR ,65,65, PETSC_DECIDE ,PETSC_DECIDE ,2,1,NULL ,NULL ,&da);

DMSetFromOptions(da); DMSetUp(da);
DMDASetFieldName(da ,0,"u"); DMDASetFieldName(da ,1,"v");
DMCreateGlobalVector(da ,&x);
/* Create timestepping solver context */

29 TSCreate(PETSC_COMM_WORLD ,&ts);
TSSetType(ts,TSARKIMEX);
TSARKIMEXSetFullyImplicit(ts,PETSC_TRUE);
TSSetDM(ts,da);
TSSetProblemType(ts,TS_NONLINEAR);

34 TSSetRHSFunction(ts,NULL ,RHSFunction ,& appctx);
TSSetRHSJacobian(ts,NULL ,NULL ,RHSJacobian ,& appctx);
/* Set initial conditions */
InitialConditions(da,x);
TSSetSolution(ts,x);

39 /* Set solver options */
TSSetMaxTime(ts ,2000.0);
TSSetTimeStep(ts ,.0001);
TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);
TSSetFromOptions(ts);

44 /* Solve ODE system */
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TSSolve(ts,x);
VecDestroy (&x); TSDestroy (&ts); DMDestroy (&da);
PetscFinalize ();

}
49 /* RHSFunction - Evaluates nonlinear function , F(x). */

RHSFunction(TS ts ,PetscReal ftime ,Vec U,Vec F,void *ptr) {
AppCtx *appctx = (AppCtx *)ptr;
DM da;
PetscInt i,j,Mx,My,xs ,ys,xm ,ym;

54 PetscReal hx,hy ,sx,sy;
PetscScalar uc ,uxx ,uyy ,vc,vxx ,vyy;
Field **u,**f;
Vec localU;

59 TSGetDM(ts ,&da);
DMGetLocalVector(da ,& localU);
DMDAGetInfo(da ,PETSC_IGNORE ,&Mx ,&My,PETSC_IGNORE ,...)
hx = 2.50/( PetscReal)(Mx); sx = 1.0/(hx*hx);
hy = 2.50/( PetscReal)(My); sy = 1.0/(hy*hy);

64 /* Scatter ghost points to local vector */
DMGlobalToLocalBegin(da,U,INSERT_VALUES ,localU);
DMGlobalToLocalEnd(da,U,INSERT_VALUES ,localU);
DMDAVecGetArrayRead(da,localU ,&u);
DMDAVecGetArray(da,F,&f);

69 /* Get local grid boundaries
DMDAGetCorners(da ,&xs ,&ys,NULL ,&xm ,&ym,NULL);
/* Compute function over the locally owned part of the grid */
for (j=ys; j<ys+ym; j++) {

for (i=xs; i<xs+xm; i++) {
74 uc = u[j][i].u;

uxx = (-2.0*uc + u[j][i-1].u + u[j][i+1].u)*sx;
uyy = (-2.0*uc + u[j-1][i].u + u[j+1][i].u)*sy;
vc = u[j][i].v;
vxx = (-2.0*vc + u[j][i-1].v + u[j][i+1].v)*sx;

79 vyy = (-2.0*vc + u[j-1][i].v + u[j+1][i].v)*sy;
f[j][i].u = appctx ->D1*(uxx + uyy)-uc*vc*vc+appctx ->gamma *(1.0-uc);
f[j][i].v = appctx ->D2*(vxx + vyy)+uc*vc*vc -(appctx ->gamma +

appctx ->kappa)*vc;
}

}
84 DMDAVecRestoreArrayRead(da ,localU ,&u);

DMDAVecRestoreArray(da,F,&f);
DMRestoreLocalVector(da ,& localU);

}
RHSJacobian(TS ts ,PetscReal t,Vec U,Mat A,Mat BB ,void *ctx) {

89 AppCtx *appctx = (AppCtx *)ctx; /* application context */
DM da;
PetscInt i,j,Mx,My,xs ,ys,xm ,ym;
PetscReal hx,hy ,sx,sy;
PetscScalar uc ,vc;

94 Field **u;
Vec localU;
MatStencil stencil [6], rowstencil;
PetscScalar entries [6];

99 TSGetDM(ts ,&da);
DMGetLocalVector(da ,& localU);
DMDAGetInfo(da ,PETSC_IGNORE ,&Mx ,&My,PETSC_IGNORE ,...)
hx = 2.50/( PetscReal)(Mx); sx = 1.0/(hx*hx);
hy = 2.50/( PetscReal)(My); sy = 1.0/(hy*hy);

104 DMGlobalToLocalBegin(da,U,INSERT_VALUES ,localU);
DMGlobalToLocalEnd(da,U,INSERT_VALUES ,localU);
DMDAVecGetArrayRead(da,localU ,&u);
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DMDAGetCorners(da ,&xs ,&ys,NULL ,&xm ,&ym,NULL);

109 stencil [0].k = 0; stencil [1].k = 0; stencil [2].k = 0;
stencil [3].k = 0; stencil [4].k = 0; stencil [5].k = 0;
rowstencil.k = 0;
for (j=ys; j<ys+ym; j++) {

stencil [0].j = j-1;
114 stencil [1].j = j+1;

stencil [2].j = j;
stencil [3].j = j;
stencil [4].j = j;
stencil [5].j = j;

119 rowstencil.k = 0; rowstencil.j = j;
for (i=xs; i<xs+xm; i++) {

uc = u[j][i].u;
vc = u[j][i].v;
uyy = (-2.0*uc + u[j-1][i].u + u[j+1][i].u)*sy;

124 vxx = (-2.0*vc + u[j][i-1].v + u[j][i+1].v)*sx;
vyy = (-2.0*vc + u[j-1][i].v + u[j+1][i].v)*sy;
f[j][i].u = appctx ->D1*(uxx + uyy)-uc*vc*vc+appctx ->gamma *(1.0-uc);

stencil [0].i = i; stencil [0].c = 0; entries [0] = appctx ->D1*sy;
129 stencil [1].i = i; stencil [1].c = 0; entries [1] = appctx ->D1*sy;

stencil [2].i = i-1; stencil [2].c = 0; entries [2] = appctx ->D1*sx;
stencil [3].i = i+1; stencil [3].c = 0; entries [3] = appctx ->D1*sx;
stencil [4].i = i; stencil [4].c = 0; entries [4] = -2.0*appctx ->D1*(sx +

sy) - vc*vc - appctx ->gamma;
stencil [5].i = i; stencil [5].c = 1; entries [5] = -2.0*uc*vc;

134 rowstencil.i = i; rowstencil.c = 0;
MatSetValuesStencil(A,1,&rowstencil ,6,stencil ,entries ,INSERT_VALUES);

stencil [0].c = 1; entries [0] = appctx ->D2*sy;
stencil [1].c = 1; entries [1] = appctx ->D2*sy;

139 stencil [2].c = 1; entries [2] = appctx ->D2*sx;
stencil [3].c = 1; entries [3] = appctx ->D2*sx;
stencil [4].c = 1; entries [4] = -2.0*appctx ->D2*(sx + sy) + 2.0*uc*vc -

appctx ->gamma - appctx ->kappa;
stencil [5].c = 0; entries [5] = vc*vc;
rowstencil.c = 1;

144 MatSetValuesStencil(A,1,&rowstencil ,6,stencil ,entries ,INSERT_VALUES);
}

}
DMDAVecRestoreArrayRead(da,localU ,&u);
DMRestoreLocalVector(da ,& localU);

149 MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
MatSetOption(A,MAT_NEW_NONZERO_LOCATION_ERR ,PETSC_TRUE);

}

5. ADAPTIVE TIME STEPPING AND ERROR CONTROL
PETSc provides several options for automatic timestep control in order to attain a
user-specified goal via a TSAdapt context. Typically, the goals are related to accuracy. In
this case the user provides an absolute (ATOL) and a relative (RTOL) error tolerance.
The adaptor controls the timestep in order to meet the specified error tolerance. Most
time-stepping methods with adaptivity evaluate a lower-order approximation at each
timestep by using a different set of coefficients, denote this solution as ũ. The following
weighted error quantity is used for time-step control:

werr(t[n]) =
||u(t[n])− ũ(t[n])||{1,2,...,∞}

ATOL + RTOL max(|u(t[n])|, |ũ(t[n])|)
. (7)
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If werr(t[n]) is larger than one, then the estimated local trunctation error at step n
exceeds ATOL or RTOL. Otherwise, the estimated error is less than that prescribed
by the user, in which case the step is accepted and the next step is adjusted so that it
tracks whether werr(t[n]) will approach the value one. If the error exceeds the toler-
ances specified by the user, then the step is rejected and a smaller timestep is taken.
This logic is implemented in the “basic” adaptor. A more advanced adaptivity logic
based on linear digital control theory and aimed at producing smoother step size se-
quences is implemented in the “dsp” adapter [Söderlind 2003; Söderlind and Wang
2006].

In many fluid dynamics applications the timestep is restricted by stability consid-
erations as given by the Courant-Friedrichs-Lewy (CFL) condition. TS provides an
adapter that controls the timestep so that the CFL stability is not exceeded. Addition-
ally, a special adapter for controlling the global error for the TS glee method [Constan-
tinescu 2018] is available. This adapter can be used wherever the standard (basic) one
is used. Similar to the basic adapter, the glee adapter can be used for tracking the
absolute and relative errors separately.

A list of timestep adapters is presented in Table V. Custom adapters can be easily
registered vis the PETSc API.

Table V. List of time integration adapter schemes currently available in the TSAdapt compo-
nent of PETSc.

TS Adapt Name Remarks Used by
none No adaptivity all
basic Standard timestep adaptivity

[Gear 1971]
all with lower-order error approxi-
mation

dsp Adapter using control theory
[Söderlind 2003]

same as basic

cfl Controls the timestep to match er-
ror provided CFL limit

typically TS spp, rk

glee Time step adaptivity with global
error estimation[Constantinescu
2018]

typically for TS glee methods, ex-
tends TSAdapt basic

6. COMPUTING SENSITIVITIES (DERIVATIVES)
The time-stepping library provides a framework based on discrete forward (tangent
linear) and adjoint models for sensitivity analysis for ODEs and DAEs. The ODE/DAE
solution process (henceforth called the forward run) can be obtained by using either
explicit or implicit solvers in TS, depending on the problem properties. Currently sup-
ported method types are TSRK (Runge-Kutta) explicit methods and TSTHETA (Theta)
implicit methods.

6.1. Discrete adjoint sensitivity
The TSAdjoint routines of PETSc provide the capability to calculate partial derivatives
of a given objective function

Ψi(u0, p) = Φi(uF , p) +

∫ tF

t0

ri(u(t), p, t)dt i = 1, ..., nobj, (8)

subject to initial conditions u0 and parameters p.
Without loss of generality, we assume that the system is integrated with a one-step

method,

un+1 = Nn(un), n = 0, . . . , N − 1, u0 = I, (9)
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where I are the initial values and the solution at the end of the simulation is given by
uN .

To illustrate the approach consider a simple case in which we compute the sensi-
tivities of the terminal function ψ(uN ) to initial values only. We use the Lagrange
multipliers λ0,. . . ,λN to account for the constraint from each timestep, and we define
the Lagrangian as

L(I, u0, . . . , uN , λ0, . . . , λN ) = ψ(uN )− λT0 (u0 − I)−
N−1∑
n=0

λTn+1 (un+1 −N (un)) . (10)

Differentiating Equation (10) w.r.t. I and applying the chain rule, we obtain

dL
dI

= λT0 −
(
dψ

du
(uN )− λTN

)
∂uN
∂I
−

N−1∑
n=0

(
λTn − λTn+1

dN
dy

(un)

)
∂un
∂I

. (11)

By defining λ to be the solution of the discrete adjoint model,

λN =

(
dψ

du
(un)

)T

, λn =

(
dN
du

(un)

)T

λn+1, n = N − 1, . . . , 0, (12)

we obtain the gradient ∇IL = ∇Iψ(un) = λ0.
This model can be expanded to incorporate integral objective functions and calculate

parametric sensitivities by augmenting the state variable into a larger system. See
[Zhang et al. 2017] for more details.

To efficiently calculate the gradient with adjoint method, one needs to first perform
a forward run that solves the original equation and saves the solution trajectory with
a checkpointing scheme, initialize the adjoint sensitivity variables, and then perform
a backward run that propagates the adjoint sensitivity according to (12). As can be
seen from the adjoint equation (12), performing an adjoint step requires trajectory
information including the solution vector at the current step and optional stage values
if a multistage time-stepping method is used. Applying checkpointing techniques that
have partial recomputation of the solution provides a balance between recomputation
and storage.

To use the PETSc adjoint solver, one creates two arrays of ncost vectors λ and µ
(if there are no parameters p, µ can be set to NULL). The λ vectors have the same
dimension and parallel layout as the solution vector for the ODE, and the µ vectors are
of dimension p. The vectors λi and µi should be initialized with the values dΦi/dy|t=tF
and dΦi/dp|t=tF respectively.

If F () is a function of p, one needs to also provide the Jacobian Fp with

TSAdjointSetRHSJacobian(TS ts ,Mat Amat ,
(*fp)(TS,PetscReal ,Vec ,Mat ,void*),void *ctx)

The arguments for the function fp() are the timestep context, current time, u, and the
(optional) user-provided context. If there is an integral term in the cost function, one
must also provide Jacobian terms for the integrand with
TSSetCostIntegrand(TS ts,PetscInt numcost ,Vec costintegral ,

(*rf)(TS,PetscReal ,Vec ,Vec ,void*) ,(*drduf)(TS,PetscReal ,Vec ,Vec*,void*),
(*drdpf)(TS ,PetscReal ,Vec ,Vec*,void*),void *ctx)

where drduf = dr/du, drdpf = dr/dp.
The integral term can be evaluated in either the forward run or the backward run

by using the same time-stepping algorithm as for the original equations.
The features of PETSc adjoint solver are summarized as follows.
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Fig. 2. Structure of PETSc implementation for adjoint sensitivity analysis [Zhang et al. 2017]

— Supports multiobjective sensitivity calculation and integral objective functions.
— Handles hybrid dynamical systems with discontinuities.
— Contains state-of-the-art checkpointing schemes.

The adjoint solver is built on existing components in PETSc’s time-stepping library
TS, as shown in Fig. 2.

(1) The TSEvent object, further introduced in Sec. 7, supports detecting events and
allows users to add a post-event handler to modify the right-hand side function,
reinitialize the DAE system, and apply jump conditions for sensitivity analysis. It
is particularly important for the simulation of hybrid dynamical systems.

(2) The TSTrajectory object provides a variety of sophisticated online and offline
checkpointing schemes that are suitable for single-level storage media (for ex-
ample, RAM) and multilevel storage media (RAM and external disk/tape). Tra-
jectory information is stored as checkpoints in the forward run by repeatedly call-
ing TSTrajectorySet at each timestep. TSTrajectoryGet is responsible for obtain-
ing the required trajectory information before an adjoint step starts. It may ex-
tract the information from the restored checkpoint directly or recompute from the
checkpoint. Recomputation typically happens when checkpoints are stored only
at selective timesteps because of limited storage capacity. TSTrajectorySet and
TSTrajectoryGet encapsulate the state-of-the-art checkpointing scheduler revolve
[Griewank and Walther 2000] that can generate a guaranteed optimal strategy.

(3) TSAdjointStep corresponds to the adjoint version of TSStep, which fulfills the time-
stepping operator N (un). Thus they have similar underlying infrastructure, and
their implementations differ from one time-stepping method to another. By design,
the inputs for the adjoint solver are either reused or modified from the original TS
solver.

All the components are compatible with one another and used together within the
highly composable solver in order to tackle the difficulties of hybrid systems. The pa-
per [Marin et al. 2017] contains details on using the infrastructure discussed here for
solving PDE-constrained optimization problems utilizing the spectral element method.

6.2. Discrete forward (tangent linear) sensitivity
The discrete forward (also known as tangent linear) model for a one-step time inte-
gration algorithm can be obtained by taking the derivative of (9) with respect to the
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parameters. The propagation equation for parameters p can be symbolically described
by

S0 =
dI
dp
, Sn+1 =

dN
du

(un)Sn, n = 0, . . . , N − 1, (13)

where Sn = dXn/dp is a matrix denoting the solution sensitivities (or so-called tra-
jectory sensitivities in the power system field). Note that each parameter results in
one corresponding column of the sensitivity matrix S and one linear equation to be
solved at each timestep. Consequently, the computational cost of the forward approach
is linear in the number of parameters for which the sensitivities are calculated. This
feature usually limits its application to cases involving few parameters.

Like the discrete adjoint models, the implementation of discrete forward models also
depend on the particular time integration algorithm. In principle, these two models are
analogous to the well-known forward and reverse modes of algorithmic differentiation
(AD) that are applied to high-level abstractions of a computer program. Traditional
AD handles a sequence of operations (either a source code line or a binary instruction)
while in our case the primitive operation is a time step.

Furthermore, the forward model requires the same ingredients as those needed in
the adjoint model. Users may need to provide TSAdjointSetRHSJacobian() and TSSet-
CostIntegrand() in the same way that they are used for TSAdjoint.

Although forward sensitivities are not used as frequently with gradient-based op-
timization algorithms as are adjoint sensitivities, they still are convenient for calcu-
lating gradients for objective function in the general form (8). Specifically, the total
derivative of the scalar function Φ(XN ) can be computed with

dΦ

dp
(XN ) =

∂Φ

∂X
(XN )SN +

∂Φ

∂p
(XN ). (14)

The total derivative of the integral term in (8) (denote by q for simplicity) to parameters
p is given as

dq

dp
=

∫ tF

t0

(
∂r

∂X
(t,X)S +

∂r

∂p
(t,X)

)
dt. (15)

This integral together with q is calculated automatically by PETSc with the same time-
stepping algorithm and sequence of timesteps in the discrete approaches for consis-
tency, when users provide the necessary Jacobian callbacks with TSSetCostIntegrand.
In addition, the forward apporach is useful for obtaining solution sensitivities often
required by second-order adjoint sensitivity analysis [Azyurt and Barton 2005].

7. HANDLING DISCONTINUITIES AND EVENTS
One characteristic of applications, typically from the control systems world, is the dis-
continuous nature of equations due to the presence of various time- and state-based
nonlinearities such as faults, limiters, and hysterisis. Such discontinuities give rise to
the following conditionals1 introduced in the ODE or DAE equations:

x− x+ = 0, if x ≥ x+
x− x− = 0, if x ≤ x−
ẋ = f(x), otherwise.

(16)

PETSc supports the handling of such discontinuities through its event-handling
mechanism called TSEvent. Detecting and locating such discontinuities is done using

1Equation 16 shows one form for illustrative purposes. In general, the conditionals can include functions of
the state variables instead of simple box constraints.
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an event handler or root-finding method. A switching function h(t, x) = 0 is propagated
along with the equations. The mechanism of event detection and location is illustrated
in Fig. 3.

Fig. 3. Detection and location of nonlinearities

The time-stepper checks for the zero-crossing of the event function at every timestep.
Specific directions of zero-crossing—positive only, negative only, or both—can be pro-
vided. The zero-crossing of an event is detected by the sign change of the event func-
tion, namely, sign(h(tn)) 6= sign(h(tn+1)). If this condition is true, the event is said to
be detected and the solution rolled back to tn. By using interpolation and successively
shrinking the time boundaries, the zero-crossing of the event function is detected when
its value is within a specified tolerance. At this time instant, t∗n in Fig. 3, the disconti-
nuity is applied, and an additional step is taken to synchronize with tn+1. TSEvent also
incorporates further improvements to avoid duplicate steps (by utilizing the Illinois al-
gorithm [Dowell and Jarratt 1971]), and it speeds the detection of event zero-crossing
by using the Anderson–Björck method. [Galdino 2011]. In the case of multiple events
detected during the same timestep, the event detection mechanism uses the smallest
interpolated timestep from the list of events.

Figure 4 presents a simple example illustrating the usage of TSEvent for a bouncing
ball.

Events can be set to TS through the application interface function TSSetEven-
tHandler(), which has the following form:
TSSetEventHandler(TS ts,PetscInt nevents ,PetscInt direction[],PetscBool

terminate [],(* eventfun)(TS,PetscReal t,Vec X,PetscScalar h[],void
*ctx) ,(* posteventfun)(TS ts,PetscInt nevents_det ,PetscInt
event_id[], PetscReal t,Vec X,PetscBool forwardsolve ,void *ctx),void
*ctx);

Here, nevents is the number of local events to be located, direction[] is an array of
zero-crossing direction for each event, and terminate[] array controls terminating TS
time-stepping after an event has been located. The event function h(t, x) is set through
the callback function *eventfun; and, optionally, a post-event function (*posteventfun)
can be set that is called after an event (or simultaneous multiple events) are located.
Specific actions following an event can be performed through the post-event function.

For event functions having widely differing scales or range of values, finer control on
locating the events can be provided through the TSSetEventTolerances() function:
TSSetEventTolerances(TS,PetscReal tol , PetscReal tols []);
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Fig. 4. Bouncing ball example: The dynamics of the bouncing ball are described by the equations u̇ = v and
v̇ = −9.8. The ball velocity v is attenuated by a factor of 0.9 every time it hits the ground u = 0.

A single tolerance tol can be used for all the events, or tolerances for each event can
be set via the tols array.

8. MONITORING AND VISUALIZATION
Often users of ODE solver packages do not know much about even the qualitative
properties of the ODE they are solving; for example, they may not even know whether
it is stiff or which parts of the ODE are stiff. To help users understand the qualitative
properties of the solution, PETSc/TS provides an extensible approach that allows mon-
itoring and visualizing the solution as well as solution properties, such as maximum
values of the solution or eigenvalues of the Jacobian.

Monitoring and visualization in PETSc are organized around the PetscViewer object,
which is an abstraction of ASCII and binary files, as well as graphics APIs. Objects can
be “viewed” with varying levels of refinement based on the viewer used and options set
for the viewer. For example, MatView(A,viewer); can display minimalistically, with
ASCII text, the size of the matrix and the number of nonzeros or the entire matrix
in binary format in a file or as an image of the sparsity pattern depending on the
viewer used. The reduction of the object from its parallel representation is handled
automatically by the PETSc libraries. In addition to viewing the PETSc data objects
Vec and Mat, one can (in fact, doing so is desirable) view the solver objects, for example,
TS. With an ASCII viewer it prints information about the type of solver being used and
all its options; for binary viewers it saves the state of the object that can be reloaded
into memory with TSLoad(); and for graphics viewers it displays the relationship of
the solver with the other solvers in process, for example, that a SNES nonlinear solver
object is embedded in a TS object and that a KSP linear solver object is embedded
in the nonlinear solver object if Newton’s method is being used. Here we display the
output of a TSView() on a particular ODE solver in ASCII.
TS Object: 1 MPI processes

type: rosw
maximum steps=1000
maximum time=20
total number of nonlinear solver iterations=108
total number of nonlinear solve failures=0
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total number of linear solver iterations=108
total number of rejected steps=0

Rosenbrock-W ra34pw2
Abscissa of A = 0.000000 0.871733 0.731580 1.000000
Abscissa of A+Gamma = 0.435867 0.871733 0.731580 1.000000

TSAdapt Object: 1 MPI processes
type: basic
number of candidates 1

Basic: clip fastest decrease 0.1, fastest increase 10
Basic: safety factor 0.9, extra factor after step rejection 0.5

SNES Object: 1 MPI processes
type: ksponly
maximum iterations=50, maximum function evaluations=10000
tolerances: relative=1e-08, absolute=1e-50, solution=1e-08
total number of linear solver iterations=1
total number of function evaluations=1
Jacobian is never rebuilt
SNESLineSearch Object: 1 MPI processes

type: basic
maxstep=1.000000e+08, minlambda=1.000000e-12
tolerances: relative=1.000000e-08, absolute=1.000000e-15, lambda=1.000000e-08
maximum iterations=1

KSP Object: 1 MPI processes
type: preonly
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using NONE norm type for convergence test

PC Object: 1 MPI processes
type: lu
LU: out-of-place factorization
tolerance for zero pivot 2.22045e-14
matrix ordering: nd
factor fill ratio given 5, needed 1
Factored matrix follows:
Mat Object: 1 MPI processes
type: seqaij
rows=3, cols=3
package used to perform factorization: petsc
total: nonzeros=9, allocated nonzeros=9
total number of mallocs used during MatSetValues calls =0
using I-node routines: found 1 nodes, limit used is 5

linear system matrix = precond matrix:
Mat Object: 1 MPI processes
type: seqaij
rows=3, cols=3
total: nonzeros=9, allocated nonzeros=15
total number of mallocs used during MatSetValues calls =0
using I-node routines: found 1 nodes, limit used is 5

Viewing of solver objects can usually be controlled at runtime via the options
database. For example, -ts view produces ASCII output about the solver, whereas
-ts view draw produces a graphical display of the solver.

In addition to static views of PETSc data and solver objects, we provide numerous
ways of dynamically viewing the solution and properties of the solution, from within
the program or via the options database. This process is handled via “monitor” callback
functions that can be attached to solver objects. For TS this is done with
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TSMonitorSet(TS ts ,(* monitor)(TS ts,PetscInt timestep ,PetscReal time ,Vec u
,void*mctx),void *mctx ,(* mdestroy)(void**mctx));

The monitor() function provided is called at the beginning and at the end of each
timestep, and it can present the solution information in any way the user likes. Various
monitors may be set for the same solver. PETSc provides a variety of default monitors
that

— print the current timestep and time,
— save the current solution to a binary or vtk file,
— display the current solution using a variety of graphical approaches using X win-

dows or OpenGL, and
— display the eigenvalues of the current operator, which is useful for understanding

the stability of the scheme being used.

In addition, the monitor() routines can compute and track information over the life-
time of the simulation, for example, maximum and minimum values of the solution or
conserved quantities. The idea is that rather than requiring users to modify the actual
ODE integrator code to track any property of the solution or solution process, simple
monitor routines are provided. Many of these monitoring routines can be controlled
from the command line, for example -ts monitor lg timestep allows one to graphi-
cally monitor the changes in the adapted timestep as the computation proceeds.
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0 1.0 2.0 3.0 4.0

Time

1.3e-1

6.3e-1

1.1

1.6

T
im

e
st

ep

x x x
x

x

x

x

x

The nonlinear and linear solvers also provide the same type of flexible monitoring of
the convergence process, with many available default monitors allowing one to track
how well the selected solvers are working.

PETSc provides a simple but powerful API and options for gathering performance
information about the solution time, for example, time in the linear solvers and time in
the computation of the Jacobian. These allow users to quickly focus in on the portions
of the computation that are the most time consuming and either select alternative
algorithms or further optimize the implementation. These are discussed in the PETSc
users manual [Balay et al. 2017].

9. SUPPORT FOR SPECIFIC APPLICATION DOMAINS
Many application areas have their own vocabulary and methodology for describing
their problem that are often distinct from the language of ODEs. Although underlying
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their simulation is a set of ODEs or DAEs, they never work directly with this form;
rather, they express their problems at a higher level of abstraction. Users can easily
take advantage of these higher levels with the PETSc ODE and DAE solvers, which
allow the users to work with their own natural language for defining the problem
and working with it. We already provide this higher-level interface for two application
areas: power systems analysis and chemical reactions. We expect to do more in the
future in collaboration with application partners.

9.1. Electrical Power Grid via DMNetwork
Applications in an electrical power grid span a large range of temporal and spatial
scales that entail problems involving secure, stable, and efficient planning and oper-
ation of the grid. A list of potential applications suitable for PETSc usage is given
in [Abhyankar et al. 2011]. PETSc’s time-stepping library TS has been used mainly
for applications assessing the impacts of large disturbances, such as short circuits
and equipment outages, on the stability of the grid. In such applications, called tran-
sient stability analysis in electrical power grid parlance, the stability of the grid is
determined through a time-domain simulation of the power grid differential-algebraic
equations. The differential equations, f(t, y, x), describe the dynamics of electrome-
chanical generators and motors, while the algebraic equations, g(t, x, y), are used for
the electrical network comprising transmission lines, transformers, and other connect-
ing equipment.

ẋ =f(t, x, y) (17)
0 =g(t, x, y) (18)

Different time-stepping schemes, including adaptive stepping and event handling, are
compared in [Abhyankar et al. 2017a] for the solution of transient stability problems.
Rosenbrock schemes were found to be optimal in terms of speedup and accuracy. In
[Abhyankar et al. 2017b] the authors present experiments to achieve real-time simu-
lation speed using PETSc’s time-stepping and linear solvers. Results show that real-
time simulation speed was achieved on fairly large electrical grid. Similar real-time
simulation speed results have also been reported in [Abhyankar and Flueck 2012].
The authors in [Jin et al. 2017] compare parallel transient stability algorithms using
MPI and OpenMP. GridPACK [Palmer et al. 2018], a software library for developing
parallel power grid applications that uses PETSc’s core solvers, is used in this work.
Efficient calculation of sensitivities of power grid dynamics trajectories to initial con-
ditions using a discrete adjoint scheme is described in [Zhang et al. 2017].

DMNetwork [Abhyankar et al. 2014; Maldonado et al. 2017] is a relatively new
subclass of PETSc’s data management class DM that provides functionality for effi-
ciently managing and migrating data and topology for networks and collections of net-
works. It handles the complex node-edge relationships typically found in unstructured
network problems such as electrical grids, water networks, and gas networks; and
it provides simple abstractions to query the network topology and associate physics
with nodes/edges, acting as a middle layer between PETSc solvers and the applica-
tion physics. DMNetwork has been used for several network applications, including
electrical grids [Abhyankar et al. 2013], water networks with over 1 billion unknowns
[Maldonado et al. 2017], and gas networks [Jalving et al. 2017].

9.2. Chemical Reactions via TCHEM
TCHEM [Safta et al. 2011] is an open source implementation of many of the reaction
network chemistry capabilities of the commercial ChemKin package [chemkin 2017].
TCHEM provides the code for the ODE function evaluation and its Jacobian compu-
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tation. It can read ChemKin data files and construct the appropriate needed function
evaluations. PETSc provides an easy-to-use interface to TCHEM. In the code listing
below we demonstrate how the TCHEM function and Jacobian routines can easily be
wrapped and called from PETSc, thus merging TCHEM’s chemistry capabilities with
PETSc’s ODE integrators.
FormRHSFunction(TS ts,PetscReal t,Vec X,Vec F,void *ptr){

User user = (User)ptr;
PetscScalar *f;

4 const PetscScalar *x;

VecGetArrayRead(X,&x); VecGetArray(F,&f);
PetscMemcpy(user ->tchemwork ,x,(user ->Nspec +1)*sizeof(x[0]));
user ->tchemwork [0] *= user ->Tini; /* Dimensionalize */

9 TC_getSrc(user ->tchemwork ,user ->Nspec+1,f);TC
f[0] /= user ->Tini; /* Non -dimensionalize */
VecRestoreArrayRead(X,&x); VecRestoreArray(F,&f);

}
FormRHSJacobian(TS ts,PetscReal t,Vec X,Mat Amat ,Mat Pmat ,void *ptr){

14 User user = (User)ptr;
const PetscScalar *x;
PetscInt M = user ->Nspec+1,i;

VecGetArrayRead(X,&x);
19 PetscMemcpy(user ->tchemwork ,x,(user ->Nspec +1)*sizeof(x[0]));

VecRestoreArrayRead(X,&x);
user ->tchemwork [0] *= user ->Tini; /* Dimensionalize temperature */
TC_getJacTYN(user ->tchemwork ,user ->Nspec ,user ->Jdense ,1);
for (i=0; i<M; i++) user ->Jdense[i + 0*M] /= user ->Tini;

24 for (i=0; i<M; i++) user ->Jdense [0 + i*M] /= user ->Tini;
for (i=0; i<M; i++) user ->rows[i] = i;
MatSetOption(Pmat ,MAT_ROW_ORIENTED ,PETSC_FALSE);
MatSetOption(Pmat ,MAT_IGNORE_ZERO_ENTRIES ,PETSC_TRUE);
MatZeroEntries(Pmat);

29 MatSetValues(Pmat ,M,user ->rows ,M,user ->rows ,user ->Jdense ,INSERT_VALUES);
MatAssemblyBegin(Pmat ,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(Pmat ,MAT_FINAL_ASSEMBLY);

}
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