
SPARSE TRIANGULAR SOLVE REVISITED: DATA LAYOUT
CRUCIAL TO BETTER PERFORMANCE

BARRY SMITH∗ AND HONG ZHANG†

Abstract. A key to good processor utilization for sparse matrix computations is storing the
data in the format that is most conducive to fast access by the memory system. In particular,
for sparse matrix triangular solves the traditional compressed sparse matrix format is poor and
minor adjustments to the data structure can increase the processor utilization dramatically. Such
adjustments involve storing the L and U factors separately and storing the U rows “backwards” so
that they are accessed in a simple streaming fashion during the triangular solves. Changes to the
PETSc libraries to use this modified storage format resulted in over twice the floating point rate for
some matrices. This improvement can be accounted for by a decrease in the cache misses and TLB
(transaction lookaside buffer) misses in the modified code.

Key words. ILU-factorization, sparse triangular solve

AMS subject classifications.

1. Introduction. Many of the basic computational kernels in numeric software
libraries were developed and implemented based on decades-old algorithms and tech-
niques without serious consideration of computer architecture, e.g., the complex mem-
ory layout and data-fetching behavior. Traditionally, numerical algorithms and the
associated programming subroutines are evaluated based on such factors as the mathe-
matical error analysis, the rate of algorithmic convergence, and the flop counts. Hence
many applications fail to achieve the anticipated speedup because of a mismatch be-
tween the data access patterns in the code and the data access patterns that are
fastest on the given hardware.

As PETSc developers [2, 3], we have long been aware of the various memory
bottlenecks in sparse matrix computation. We feel strongly that the data access
pattern should become a standard in the evaluation of numerical algorithms and their
implementations. Recently, we explored this concept on a computational kernel in
PETSc: the sparse triangular solve. Through a simple reorganization of the data
structure during the matrix factorization, we witnessed over 100 percent acceleration
in the sparse triangular solve on a single core as a result of much better utilization
of the memory subsystem. We are not changing how much data is accessed, nor are
we changing the numerical algorithm. We are changing only the locations where the
data is stored so that accessing it is as fast as possible. Essentially, we are decreasing
the number of cache misses, fully utilizing each cache line (rather than having parts
of cache lines not need in the next step of computation), and reducing the number of
TLB (transaction lookaside buffer) misses.

The compressed sparse row (CSR) format is the most commonly used sparse
matrix storage format. For sparse matrices with no additional structure (small
dense blocks or values along certain diagonals, for example) the CSR format is
appropriate for the sparse matrix-vector product kernel. Many sparse matrix soft-
ware packages also provide LU and/or ILU factorization and triangular solver ker-
nels. These are almost aways implemented by using some simple variant of the
CSR format. For example, the Euclid [14, 15], SPARSEKIT ILUT [16], and Aztec

∗Mathematics and Computer Science Division, Argonne National Laboratory
(bsmith@mcs.anl.gov).
†Computer Science Department, Illinois Institute of Technology (hzhang@mcs.anl.gov).

1

2 B. Smith and H. Zhang

[13, 18] ILU implementations store the L and U factors interlaced by row, that is
as [L(1, :), U(1, :), L(2, :), U(2, :), ..., L(n, :), U(n, :)]. The Yale Sparse Matrix Package
[6, 7] and hypre’s pilut [4, 8] store the L and U separately but still by row, start-
ing with the first [L(1, :), L(2, :), ..., L(n, :)] and [U(1, :), U(2, :), ..., U(n, :)]. All these
variants are poor for system utilization because they result in slow memory access
patterns on the back triangular solves. Hence the triangular solves as implemented
have much lower floating-point rates than their corresponding matrix-vector prod-
ucts. By a simple change in the data layout we show that it is possible to bring the
floating-point rate of the triangular solves up to almost as high as that for the sparse
matrix-vector products.

In this paper we measure the efficiency of the triangular solves by their flop rates.
High flop rates are not the ultimate goal; faster time to solution is the ultimate goal.
But since for triangular solves the number of floating point operations remains the
same, the flop rate is a good measure of the overall utilization of the compute node.
Sparse matrix computations are always memory bandwidth limited. That is, some
upper bound on the speed of computation is determined by the raw speed at which
the memory can provide data for the process; see, for example, [1, 9, 10]. In this paper
the focus is on how to get a particular computation closer to the memory bandwidth
limit by taking into account other aspects of the memory system than simple raw
bandwidth.

2. Modifications to the Data Structure. The sparse triangular solve and
matrix-vector product are the dominating computational kernels in many large-scale
iterative solvers. When an application uses Krylov subspace iteration with matrix-
based preconditioners, for example, the incomplete LU (ILU) preconditioner, the
matrix-vector product and sparse triangular solve are called repeatedly for generating
Krylov subspaces; they often consume 70% or higher of the total execution time.

Assuming a sparse matrix A is stored in the conventional compressed row format,
a practical way of implementing the ILU preconditioner is described in [17]:

Algorithm sparse LU factor:
Input: sparse matrix A
Output: sparse matrix factors L and U
For i = 1, 2, · · · , n Do:

w := A(i, :)

For k = 1, 2, · · · , i− 1 Do:

multiplier := A(i, k)/A(k, k)
update w := w −multiplier ∗ U(k, :)

EndDo

store w in L(i, :) and U(i, :)
EndDo

For the ILU algorithm, the arithmetic operations described above occur only in the
matrix entries that fall into a given nonzero sparse pattern. The conventional im-
plementation of the sparse LU factor algorithm uses the standard compressed row
format for the input matrix A. The entries of the output matrix factors L and U are
naturally stored together in a single array with their rows interlaced:

factor values = [L(1, :), U(1, :), L(2, :), U(2, :), ..., L(n, :), U(n, :)].(2.1)

The sparse triangular solve then follows the numerical factorization.

Sparse Triangular Solve Revisited 3

Algorithm sparse triangular solve:
Input: matrix factor L and U , right-hand side vector b
Output: solution vector x such that LUx approximates b
forward substitution

For i = 1, 2, · · · , n Do

x(i) := b(i) − L(i, 1 : i− 1) ∗ [x(1), · · · , x(i− 1)]T

EndDo

backward substitution

For i = n, n− 1, · · · , 1 Do

x(i) := (x(i) − U(i, i + 1 : n) ∗ [x(i + 1), · · · , x(n)]T)/U(i, i)
EndDo

For each call of sparse triangular solve, the array factor values in (2.1) is accessed
twice: first, in the order of

L(1, :)→ L(2, :)→ · · · → L(n, :)

during the forward substitution, then in the order of

U(n, :)→ U(n− 1, :)→ · · · → U(1, :)

during the backward substitution. Here, for simplicity we present the solves without
row and column permutations.

The flop counts for the matrix-vector product, are equal to the number of nonzero
entries in A, which is the same as the flop counts for the sparse triangular solve
when matrices L and U are obtained from the ILU(0) matrix factorization. However,
because of the difference in the data layout of the matrix entries in the original matrix
A and the matrix factors L and U , that is, contiguous array in A and noncontiguous
array in L and U , the execution time of a sparse triangular solve usually takes twice
as long as that of the matrix-vector product. The delay in the sparse triangular solve
becomes more significant for larger matrices.

A careful examination of the sparse triangular solve algorithm reveals that the
memory access can be improved through a simple reorganization of the matrix entries
in the factored matrix L and U . Instead of storing the rows of L interlaced with U ’s
in the order being computed from the sparse LU factor, we arrange them in the order
of accessing by the sparse triangular solve. Therefore the matrix entries are stored
contiguously as

factor values = [L(1, :), L(2, :), ..., L(n, :), U(n, :), ..., U(2, :), U(1, :)].(2.2)

With this data layout, the sparse triangular solve reads the array factor values (2.2)
only once, from beginning to end, in comparison with two sweeps of (2.1) as in the
previous implementation.

The idea of reorganizing matrix data is simple. Its implementation is simple,
too: in the subroutine sparse LU factor, we store U entries from the end of the
array factor values instead of next to L’s, and we modify the values of the row and
diagonal pointers accordingly. The existing subroutine sparse triangular solve requires
only trivial editing that ensures the correct rows of L and U are accessed during the
forward and backward substitution. Yet, the numerical experiments show an amazing
acceleration: up to a 100 percent reduction in execution time.

Two important variants of the basic sparse triangular solves are as follows:

4 B. Smith and H. Zhang

• Row and column permutations that are used to reduced fill in the factors or
improve the convergence of the iterative method.

• Point-block storage of the factored matrix where the matrix has “natural”
small blocks that it inherits from the continuous problem. For example,
the full implicit discretization of the Navier-Stokes equations leads to sparse
matrices with 5 by 5 dense blocks. In this case the CSR format is modified
so only a single column index is needed to indicate the block column of the
entire block. Computations using this block CSR format are faster because
fewer loads of the column indices are needed.

Both these extensions can handle the modified storage proposed and benefit from it
in the same manner.

3. Numerical Results. We tested the new data layout on two extreme cases –
the traditional 7-point stencil on a unit cube and a matrix arising from the discretiza-
tion of the compressible Euler equations – in order to get a measure of the effect of
the modified data structure on both extremely sparse matrices and those arising in
applications with several hundred nonzeros per row.

The experiments were conducted on a MacBook Pro with 2.8 GHz Intel Core 2
Duo and 1.067 GHz DDR3 memory using one core. ILU(0) with no row and column
permutations was used for both CSR and block CSR formats. We are currently
modifying all of the PETSc ILU solvers to use the new format and have obtained
similar performance improvements with those as well. Our performance results were
obtained by running the entire GMRES algorithm and profiling the relevant matrix-
vector products and sparse triangular solves. We have done so because standalone
benchmarking often produces unreasonably optimistic performance projections since
much of the data is already in cache, whereas in the actual application it will not be.
The numerical results were obtained by making multiple runs and using the average
value; all runs had results within 5 percent of the average.

The floating-point rates were obtained by using the Intel ICC compiler version
10.1 with -O3 optimization. The cache misses and TLB misses were obtained by using
the Apple profiling package Shark, Apple’s gcc version 4.0.1 with the -O3 option, and
the Intel hardware counters L2 RQSTS and DTLB MISSES.

Table 3.1
Performance Improvements for the Extremely Sparse Matrix

Matrix-Vector Triangular Solve
Product Noncontiguous Array Contiguous Array

Flop rate (megaflops) 537 261 (49% of multiply) 447 (83% of multiply)

L2 cache misses (1000) 680 2, 200 610
TLB misses (1000) 635 1, 300 750

We considered two cases:
• Extremely Sparse Matrix, created with the 7-point stencil finite-difference

scheme on a 65 by 65 by 65 cube. The performance results are given in Table
3.1.

• Block Sparse Matrix, the Jacobian matrix obtained from a fully implicit
compressible Euler code on a mapped C-H mesh [12, 11]. It has a natural
block size of 5. For this matrix we ran two studies. The first, where we
use the traditional compressed sparse row format, is given in Table 3.2. The

Sparse Triangular Solve Revisited 5

Table 3.2
Performance Improvements for the Block Sparse Matrix

Matrix-Vector Triangular Solve
Product Noncontiguous Array Contiguous Array

Flop rate (megaflops) 620 260 (42% of multiply) 660 (106% of multiply)

L2 cache misses (1000) 260 7,000 300
TLB misses (1000) 500 950 500

second, that uses the block compressed sparse row format, is given in Table
3.3.

Table 3.3
Performance Improvements for Block Sparse Matrix Using Block Compressed Sparse Row Storage

Matrix-Vector Triangular Solve
Product Noncontiguous Array Contiguous Array

Flop rate (megaflops) 890 468 (53% of multiply) 758 (85% of multiply)

L2 cache misses (1000) 950 5,300 1,500
TLB misses (1000) 350 610 330

In Table 3.4 we provide the flop rates for the three studies in the previous tables
for the IBM Blue Gene/P core which is a PowerPC 450 running at 850 MHz with
memory running at 425 MHz.

Table 3.4
Flop Rate (in megaflops) Performance Improvements for the IBM Blue Gene/P Core

Matrix-Vector Triangular Solve
Product Noncontiguous Array Contiguous Array

7-point stencil 98 46 (47% of multiply) 62 (63% of multiply)

Euler 148 99 (66% of multiply) 126 (85% of multiply)
Euler with block CSR 303 198 (65% of multiply) 260 86(% of multiply)

In all cases, using contiguous arrays in the sparse triangular solve accelerates
execution time up to 100 percent in comparison with the traditional non-contiguous
array storage of matrix factors. We also list the flop rate of the matrix-vector product.
The newly proposed contiguous data layout makes the sparse triangular solve almost
as fast as the matrix-vector product.

The time required for the sparse LU factorization does not change significantly
depending on the storage of L and U , so this is not a matter of simply moving the
computation time from one part of the code to another.

4. Conclusion. We have presented a case study in sparse matrix computations
where a small change to the data structure for a sparse matrix results in a dramatic im-
provement in the performance of a computational kernel that uses the data structure.
We note that for ILU factorizations, the factorization comes first, and traditionally
that has dictated the data layout of the L and U factors. The factorization routine
loads the factor values, in a natural way, from beginning to end. But this means that
the solve routines access the values “backwards.” This emphasizes the importance of

6 B. Smith and H. Zhang

picking a data structure, based not on how it is used first, but rather on how it will
be accessed more often.

We plan to study data structures for other sparse matrix computations such as
successive overrelaxation and Eisenstat’s trick [5] to improve the performance of those
computations as well.

REFERENCES

[1] W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Achieving high
sustained performance in an unstructured mesh CFD application. In Proceedings of SC
99, 1999. Winner of Gordon Bell Special Prize at SC1999.

[2] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc
users manual. Technical Report ANL-95/11 - Revision 3.0.0, Argonne National Laboratory,
2009.

[3] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient man-
agement of parallelism in object oriented numerical software libraries. In E. Arge, A. M.
Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing,
pages 163–202. Birkhauser Press, 1997.

[4] E. Chow, A. Cleary, and R. Falgout. Design of the hypre preconditioner library. In Proceed-
ings of the SIAM Workshop on Object Oriented Methods for Inter-operable Scientific and
Engineering Computing. SIAM, 1999.

[5] S. Eisenstat. Efficient implementation of a class of CG methods. SIAM J. Sci. Stat. Comput.,
2:1–4, 1981.

[6] S. C. Eisenstat, H. C. Elman, M. H. Schultz, and A. H. Sherman. The (new) Yale Sparse Matrix
Package. Technical Report YALE/DCS/RR-265, Department of Computer Science, Yale
University, April 1983.

[7] S. C. Eisenstat, H. C. Elman, M. H. Schultz, and A. H. Sherman. Elliptic Problem Solvers II,
pages 45–52. Academic Press, 1984.

[8] R. Falgout. hypre users manual. Technical Report Revision 2.0.0, Lawrence Livermore National
Laboratory, 2006.

[9] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. High performance parallel implicit
CFD. Journal of Parallel Computing, 27:337–362, 2001.

[10] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Latency, bandwidth, and concur-
rent issue limitations in high-performance CFD. In Proceedings of the First MIT Confer-
ence on Computational Fluid and Solid Mechanics, June 2001.

[11] William D. Gropp, David E. Keyes, Lois Curfman McInnes, and M. D. Tidriri. Parallel implicit
PDE computations: Algorithms and software. In Proceedings of Parallel CFD’97, pages
333–344. Elsevier, 1998.

[12] William D. Gropp, David E. Keyes, Lois Curfman McInnes, and M. D. Tidriri. Globalized
Newton-Krylov-Schwarz algorithms and software for parallel implicit CFD. Int. J. High
Performance Computing Applications, 14:102–136, 2000.

[13] Scott A. Hutchinson, John N. Shadid, and Ray S. Tuminaro. Aztec user’s guide version 1.1.
Technical Report SAND95/1559, Sandia National Laboratories, October 1995.

[14] D. Hysom and A. Pothen. A scalable parallel algorithm for incomplete factor preconditioning.
SIAM J. Sci. Comput., 22(6):2194–2215.

[15] D. Hysom and A. Pothen. Euclid user manual (a scalable ILU preconditioning library for the
parallel solution of sparse linear systems). Technical report, Old Dominion University,
2001.

[16] Youcef Saad. SPARSKIT, a basic tool kit for sparse matrix computations. Technical Re-
port 1029, Center for Supercomputing Research and Development, University of Illinois at
Urbana-Chanpaign, 1990.

[17] Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston,
1996.

[18] Ray S. Tuminaro, Micheal Heroux, Scott A. Hutchinson, and John N. Shadid. Official Aztec
user’s guide version 2.1. Technical report, Sandia National Laboratories, 1999.

