<div dir="ltr">I thought least squares was for tall skinny (overdetermined) solves? I have a short fat (5 x ~100) matrix to solve.</div><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Sep 21, 2016 at 4:24 PM, Stefano Zampini <span dir="ltr"><<a href="mailto:stefano.zampini@gmail.com" target="_blank">stefano.zampini@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><p dir="ltr">Mark,</p>
<p dir="ltr">You can use KSPLSQR</p><span class="HOEnZb"><font color="#888888">
<p dir="ltr">Stefano</p></font></span><div class="HOEnZb"><div class="h5">
<div class="gmail_extra"><br><div class="gmail_quote">Il 21 set 2016 11:21 PM, "Mark Adams" <<a href="mailto:mfadams@lbl.gov" target="_blank">mfadams@lbl.gov</a>> ha scritto:<br type="attribution"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">I want to solve for w in V' w = b, where V is tall and skinny. So a short fat matrix "solve". This is underdetermined. I would like to minimize the two norm (or any norm) of w. This looks like an optimization problem, would TAO do this?<div>Mark</div></div>
</blockquote></div></div>
</div></div></blockquote></div><br></div>