
High Performance Geometric Multigrid:
A Supercomputer Benchmark & Metric
Mark Adams and Sam Williams
with
Jed Brown, John Shalf, Erich Strohmaier, Brian Van Straalen

ISC, Frankfurt Germany, 21 June 2016

HPGMG Project Design Goals

1.  General benchmarking efforts and provide
compact benchmark codes to aid engineers
& centers to design & deploy well balanced
machines
–  Benchmark code with sensitivities to machine

metrics that correlate well with applications
•  Presented some data from LLNL at ISC ’14

2.  HPGMG-FV: Supercomputer ranking metric
–  A specification and packaging built from Sam’s

finite volume code base

ISC, Frankfurt Germany, 21 June 2016

HPGMG-FV design

•  Compact stand alone: C + MPI (+OMP, CUDA)
•  Conceptually simple: solve Ax = b with multigrid
•  Finite Volume, 3D non-constant coef. Laplacian
•  Non-iterative (full) geometric multigrid solver
•  Metric: equations (N) solved / sec

– Map to flops/sec: 1200N (not exact nor well defined)
•  HPL uses 2N3 map

ISC, Frankfurt Germany, 21 June 2016

Stable HPGMG-FV metric

•  This year transitioned to 4th order accurate discretization
•  First “official” 4th order list, stable specification
•  Sensitive to more machine parameters than 2nd order:

1.  MPI message rates: 3x messages/op-apply
2.  MPI bandwidth: 2x message sizes (two ghost cell layers)
3.  More pressure on cache: ~2x working set size
4.  Large stencil, many data streams
5.  Wide range of message sizes: coarse grids are smaller
6.  Full MG: more small messages (more coarse grid visits)

•  More floating point intensive (flop/byte ~1)
–  With respect to “book-end” strategy of HPL-HPCG

•  We try to be in the middle

ISC, Frankfurt Germany, 21 June 2016

Maintainable, durable (+ dynamic range)

•  Experience TOP500, HPL, other benchmarking initiatives
–  Simplicity key

•  Need unambiguous specification
–  Can not afford to micro-manage or adjudicate each submission

•  Dynamic range, or strong scaling, important to applications
–  But Constraints interfere with incorporating dynamic range in

metric

ISC, Frankfurt Germany, 21 June 2016

Criterion HPGMG-FV HPL HPCG

Architecture Free ✔ ✔ Minimum 25% “main memory” usage
Scale/PM Free ✔ ✔ Gauss-Seidel only on “sub domains”
Math/algorithm
fully specified

✔ ✔
(!Str)

Vertex order not specified for G-S,
affects convergence, affects metric

Dynamic range 1, 1/8, 1/64 R½

HPGMG-FV ranking, June ‘16

ISC, Frankfurt Germany, 21 June 2016

Site Sys Arch 109
1*

DOF
1/8

Sec
1/64

MPI
*the

OMP
metric

#GPU #
HPL

#HP
CG

1 DOE/
ANL/USA

Mira IBM-
BGQ

500 313 107 49K 64 0 6 ~6

Mira Base 395 286 107 49K 64 0
2 HLRS/

Germany
Hazel
Hen

Cray
XC40

495 411 221 15K 12 0 9 ~7

3 DOE/
ORNL/US

Titan Cray
XK7

440 163 39 16K 4 1 3 ~4

4 KAUST/
SA

Sha. II Cray
XC40

326 287 175 12K 16 0 10 ~10

5 DOE/
NER/USA

Edison Cray
XC30

296 246 127 11K 12 0 49 ~16

6 CSCS
Swiss

Piz
Daint

Cray
XC30

153 69 19 4K 8 1 8 ~9

8 HLRS/G NEC SX-
AC

3.3 1.8 .75 256 1 0 - -

Turn around time: DoF/sec vs. Time

ISC, Frankfurt Germany, 21 June 2016

1

1/8

1/64

•  Dynamic range:
–  Same

concurrency
–  Reduce problem

size
–  Flat lines perfect

•  Strong scaling:
–  Same problem

size
–  Increase

concurrency
•  Weak scaling:

–  Increase both

Turn around time: DoF/sec vs. Time

ISC, Frankfurt Germany, 21 June 2016

Machine Size
(the metric)

•  Dynamic range:
–  Same

concurrency
–  Reduce problem

size
–  Flat lines perfect

•  Strong scaling:
–  Same problem

size
–  Increase

concurrency
•  Weak scaling:

–  Increase both

Turn around time: DoF/sec vs. Time

ISC, Frankfurt Germany, 21 June 2016

•  Dynamic range:
–  Same

concurrency
–  Reduce problem

size
–  Flat lines perfect

•  Strong scaling:
–  Same problem

size
–  Increase

concurrency
•  Weak scaling:

–  Increase both

Network and memory latency
dominate (flat line perfect)

•  STREAM
proxy
(usually)
– On right

•  Balance of
latencies to
memory
capacity

•  Roll-over
– On left

Turn around time: DoF/sec vs. Time

ISC, Frankfurt Germany, 21 June 2016

(generally) more
memory, hides latencies

Roll Over

Minimum turn around time

DOE ACME v1
target (5 SYPD)

•  Dynamic range:
–  Same

concurrency
–  Reduce

problem size
•  Strong scaling:

–  Same problem
size

–  Increase
concurrency

•  Weak scaling:
–  Increase both

Turn around time: DoF/sec vs. Time

ISC, Frankfurt Germany, 21 June 2016

Consider a dynamic range metric

•  Consider the sum for the three data points
(dof/sec) and not the maximum

–  Convergent series, will roll over eventually
1.  Hazel Hen 1130 (x109 dof/second)
2.  Mira 920
3.  Shaheen II 788
4.  Edison 669
5.  Titan 642
6.  Piz Daint 240

ISC, Frankfurt Germany, 21 June 2016

Community buy-in & related efforts

1.  Vendor buy-in
–  Nvidia optimized 2nd & 4th order for Kepler & Pascal

•  MPI + OpenMP + CUDA
–  Intel recently started KNL optimizing (Sam already started)

2.  Sam Williams’ GMG codes used in several efforts
•  HPGMG-FV is the ranking metric instantiation …

–  DOE FastForward2: selected as a 1/6 proxy apps
–  DOE DEGAS project:

•  investigated one-sided UPC++ implementations
•  PYGMG (python version HPGMG) with
•  SEJITS (selective just in time specialization)

–  DOE DTEC project: Halide stencil DSL of GMG
–  DOE Traleika Glacier project (Intel)

•  OCR dynamic task runtime (3 versions, low to higher level)
–  Other groups:

•  UCB, MIT, Rice, ORNL, SDSC, Riken, HLRS, KAUST, NREL

ISC, Frankfurt Germany, 21 June 2016

Submissions SC16 (hpgmg.org)

•  Welcome submissions, collaborations & questions
–  Contact hpgmg-forum@hpgmg.org
–  Visit hpgmg.org
–  Submission instructions: hpgmg.org/fv

•  Next list release at SC16 BoF, more architectures:
–  Accelerators: TH-2A, …
–  Cluster of commodity processors, infiniband

•  SuperMUC (all 17 islands, only have data with 4), …
–  K: want full scale 4th order data and G-S optimization
–  More, THL …

•  Our repositories
–  OpenMP: bitbucket.org/hpgmg/hpgmg
–  CUDA: bitbucket.org/nsakharnykh/hpgmg-cuda

ISC, Frankfurt Germany, 21 June 2016

Thank you

ISC, Frankfurt Germany, 21 June 2016

https://hpgmg.org/
https://bitbucket.org/hpgmg/hpgmg
Mark Adams
Jed Brown
John Shalf
Erich Strohmaier
Brian Van Straalen
Sam Williams

…. More back ground
4 architectures on list

ISC, Frankfurt Germany, 21 June 2016

1) Nvidia GPUs

ISC, Frankfurt Germany, 21 June 2016

Site Systm Arch. 109 x
h*

DOF/
2h

sec
4h

MPI OMP GPU HPL
rank

1 DOE/ANL/
USA

Mira IBM-
BGQ

500 313 107 49K 64 0 5

Mira (Base) 395 286 107 49K 64 0
2 HLRS/

Germany
Hazel
Hen

Cray
XC40

495 411 221 15K 12 0 8

3 DOE/
ORNL/US

Titan Cray
XK7

440 163 39 16K 4 1 2

4 KAUST/SA Sha. II Cray
XC40

326 287 175 12K 16 0 9

5 DOE/NER/
USA

Edison Cray
XC30

296 246 127 11K 12 0 40

6 CSCS
Swiss

Piz
Daint

Cray
XC30

153 69 19 4K 8 1 7

8 HLRS/
Germany

NEC SX-
ACE

3.3
* The

1.8
metric

.75 256 1 0 -

2) Light-weight in-order cores

ISC, Frankfurt Germany, 21 June 2016

Site Systm Arch. 109 x
h*

DOF/
2h

sec
4h

MPI OMP GPU HPL
rank

1 DOE/ANL/
USA

Mira IBM-
BGQ

500 313 107 49K 64 0 5

Mira (Base) 395 286 107 49K 64 0
2 HLRS/

Germany
Hazel
Hen

Cray
XC40

495 411 221 15K 12 0 8

3 DOE/
ORNL/US

Titan Cray
XK7

440 163 39 16K 4 1 2

4 KAUST/SA Sha. II Cray
XC40

326 287 175 12K 16 0 9

5 DOE/NER/
USA

Edison Cray
XC30

296 246 127 11K 12 0 40

6 CSCS
Swiss

Piz
Daint

Cray
XC30

153 69 19 4K 8 1 7

8 HLRS/
Germany

NEC SX-
ACE

3.3
* The

1.8
metric

.75 256 1 0 -

3) Cray – Xeon processors

ISC, Frankfurt Germany, 21 June 2016

Site Systm Arch. 109 x
h*

DOF/
2h

sec
4h

MPI OMP GPU HPL
rank

1 DOE/ANL/
USA

Mira IBM-
BGQ

500 313 107 49K 64 0 5

Mira (Base) 395 286 107 49K 64 0
2 HLRS/

Germany
Hazel
Hen

Cray
XC40

495 411 221 15K 12 0 8

3 DOE/
ORNL/US

Titan Cray
XK7

440 163 39 16K 4 1 2

4 KAUST/SA Sha. II Cray
XC40

326 287 175 12K 16 0 9

5 DOE/NER/
USA

Edison Cray
XC30

296 246 127 11K 12 0 40

6 CSCS
Swiss

Piz
Daint

Cray
XC30

153 69 19 4K 8 1 7

8 HLRS/
Germany

NEC SX-
ACE

3.3
* The

1.8
metric

.75 256 1 0 -

4) NEC vector architecture

ISC, Frankfurt Germany, 21 June 2016

Site Systm Arch. 109 x
h*

DOF/
2h

sec
4h

MPI OMP GPU HPL
rank

1 DOE/ANL/
USA

Mira IBM-
BGQ

500 313 107 49K 64 0 5

Mira (Base) 395 286 107 49K 64 0
2 HLRS/

Germany
Hazel
Hen

Cray
XC40

495 411 221 15K 12 0 8

3 DOE/
ORNL/US

Titan Cray
XK7

440 163 39 16K 4 1 2

4 KAUST/SA Sha. II Cray
XC40

326 287 175 12K 16 0 9

5 DOE/NER/
USA

Edison Cray
XC30

296 246 127 11K 12 0 40

6 CSCS
Swiss

Piz
Daint

Cray
XC30

153 69 19 4K 8 1 7

8 HLRS/
Germany

NEC SX-
ACE

3.3 1.8 .75 256 1 0 -

Dynamic range, DDR BW, cache size

ISC, Frankfurt Germany, 21 June 2016

Site Systm Arch. 109 x
h*

DOF/
2h

sec
4h

MPI OMP GPU HPL
rank

1 DOE/ANL/
USA

Mira IBM-
BGQ

500 313 107 49K 64 0 5

Mira (Base) 395 286 107 49K 64 0
2 HLRS/

Germany
Hazel
Hen

Cray
XC40

495 411 221 15K 12 0 8

3 DOE/
ORNL/US

Titan Cray
XK7

440 163 39 16K 4 1 2

4 KAUST/SA Sha. II Cray
XC40

326 287 175 12K 16 0 9

5 DOE/NER/
USA

Edison Cray
XC30

296 246 127 11K 12 0 40

6 CSCS
Swiss

Piz
Daint

Cray
XC30

153 69 19 4K 8 1 7

8 HLRS/
Germany

NEC SX-
ACE

3.3
* The

1.8
metric

.75 256 1 0 -

Geometric Multigrid

•  Extremely fast/efficient…
–  O(N) computational complexity (#flops)
–  O(N) DRAM data movement (#bytes)
–  O(N0.66) MPI data movement

22

“MG V-cycle”

Dominated by
On-Node Performance

Dominated by
MPI Performance

Overhead
Dominates

Ideal Performance
•  Nominally, multigrid has three

components that affect
performance

–  DRAM data movement and flop’s
to perform each stencil

–  MPI data movement for halo/
ghost zone exchanges

–  latency/overhead for each
operation (MPI when it matters)

•  These are constrained by
–  DRAM and flop rates
–  MPI P2P Bandwidth
–  MPI overhead, OpenMP/CUDA

overheads, etc…
•  The time spent in each of these

varies with level in the v-cycle
–  coarse grids have ⅛ the volume

(number of cells), but ¼ the
surface area (MPI message size)

23

Level in the V-Cycle
Ti

m
e

in
 C

om
po

ne
nt

 in
 L

ev
el

Overhead / Latency

Faster Machines?
•  If one just increases DRAM

bandwidth by 10x, then the code
becomes increasingly dominated
by MPI P2P communication

•  If one improves just DRAM and
MPI bandwidth, the code will
eventually be dominated by
CUDA, OpenMP, and MPI
overheads.

•  Unfortunately, the overheads are
hit O(logN) times.

•  Thus, if overhead dominates (flops
and bytes are free), then MGSolve
Time looks like O(logN)

•  Co-Design for MG requires a
balanced scaling of flop/s, GB/s,
memory capacities, and
overheads.

24

Level in the V-Cycle
Ti

m
e

in
 C

om
po

ne
nt

 in
 L

ev
el

Overhead / Latency

FMG
•  HPGMG-FV implements Full Multigrid (FMG).
•  FMG uses an F-Cycle with a V-Cycle at each level.
•  No iterating. One global reduction (to calculate the final residual)
•  Essentially, an O(N) direct solver (discretization error in 1 pass)

25

Smooth

Residual

Restrict

Bottom Solve

Interpolate

Interpolate (High Order)

!  Fine grids (those in slow “capacity” memory) are accessed only twice
!  Coarser grids (those that have progressively smaller working sets) are

accessed progressively more
!  Same routines are used many times with highly varied working sets
!  Coarsest grids are likely latency-limited (run on host?)
!  FMG sends O(log2(P)) messages (needs low overhead communication)
!  Stresses many aspect of the system (memory hierarchy, network, compute,

threading overheads, heterogeneity, …)

HPGMG-FV detailed timing….
 0 1 2 3 4 5 6 7 8 9
box dimension 128^3 64^3 32^3 16^3 8^3 8^3 8^3 4^3 2^3 9^3 total
------------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
smooth 0.083160 0.009769 0.002024 0.000753 0.000592 0.000711 0.000833 0.001602 0.001382 0.000000 0.100826
residual 0.018734 0.000940 0.000204 0.000088 0.000073 0.000087 0.000102 0.000181 0.000158 0.000155 0.020721
applyOp 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001907 0.001907
BLAS1 0.004449 0.000115 0.000057 0.000053 0.000064 0.000069 0.000082 0.000206 0.000197 0.014692 0.019984
BLAS3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Boundary Conditions 0.000000 0.000308 0.000080 0.000017 0.000005 0.000005 0.000005 0.000013 0.000014 0.000011 0.000458
Restriction 0.000922 0.000350 0.000297 0.000141 0.000435 0.000363 0.000445 0.000603 0.000790 0.000000 0.004346
 local restriction 0.000915 0.000342 0.000288 0.000130 0.000032 0.000037 0.000042 0.000129 0.000146 0.000000 0.002062
 pack MPI buffers 0.000001 0.000001 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000000 0.000007
 unpack MPI buffers 0.000001 0.000001 0.000001 0.000001 0.000095 0.000106 0.000124 0.000140 0.000224 0.000000 0.000694
 MPI_Isend 0.000001 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000000 0.000007
 MPI_Irecv 0.000001 0.000001 0.000001 0.000001 0.000035 0.000045 0.000061 0.000056 0.000063 0.000000 0.000263
 MPI_Waitall 0.000000 0.000001 0.000001 0.000001 0.000263 0.000164 0.000205 0.000263 0.000340 0.000000 0.001239
Interpolation 0.002921 0.001742 0.001107 0.000369 0.000499 0.000579 0.000741 0.000631 0.000740 0.000000 0.009329
 local interpolation 0.002916 0.001735 0.001098 0.000358 0.000068 0.000077 0.000085 0.000137 0.000147 0.000000 0.006621
 pack MPI buffers 0.000000 0.000000 0.000001 0.000001 0.000157 0.000179 0.000202 0.000147 0.000238 0.000000 0.000926
 unpack MPI buffers 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000002 0.000000 0.000009
 MPI_Isend 0.000000 0.000000 0.000001 0.000001 0.000131 0.000154 0.000196 0.000154 0.000185 0.000000 0.000822
 MPI_Irecv 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000000 0.000007
 MPI_Waitall 0.000001 0.000001 0.000001 0.000001 0.000132 0.000155 0.000241 0.000176 0.000150 0.000000 0.000856
Ghost Zone Exchange 0.010486 0.005997 0.003671 0.003480 0.003963 0.004767 0.005602 0.007449 0.007796 0.002098 0.055309
 local exchange 0.000003 0.000003 0.000004 0.000005 0.000006 0.000007 0.000008 0.001059 0.001659 0.001838 0.004589
 pack MPI buffers 0.001327 0.000467 0.000442 0.000518 0.000624 0.000743 0.000863 0.000991 0.001208 0.000026 0.007210
 unpack MPI buffers 0.000473 0.000455 0.000485 0.000593 0.000738 0.000878 0.001019 0.001130 0.001331 0.000025 0.007125
 MPI_Isend 0.000302 0.000339 0.000450 0.000781 0.000937 0.001143 0.001334 0.001515 0.001190 0.000018 0.008009
 MPI_Irecv 0.000093 0.000096 0.000140 0.000165 0.000210 0.000250 0.000299 0.000313 0.000257 0.000012 0.001835
 MPI_Waitall 0.008260 0.004603 0.002103 0.001355 0.001370 0.001656 0.001970 0.002306 0.002008 0.000011 0.025641
MPI_collectives 0.001312 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.002378 0.003691
------------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Total by level 0.122319 0.018799 0.007384 0.004927 0.005706 0.006680 0.008064 0.010724 0.010967 0.021933 0.217503

 Total time in MGBuild 225.675795 seconds
 Total time in MGSolve 0.217941 seconds
 number of v-cycles 1
Bottom solver iterations 70

 Performance 4.489e+11 DOF/s

calculating error...
 h = 2.170138888888889e-04 ||error|| = 4.595122248560908e-11

26

How sensitive is exascale to
operations with limited parallelism?

•  MG’s computational complexity is premised on the assumption that N/8 flops
requires N/8 time.

–  N+N/8+N/64… = O(N) flops ~ O(N) time
•  Today, the performance of MIC/GPU processors decreases substantially

when parallelism falls below a certain threshold (underutilization)
•  If time ceases to be tied to N but saturates at some constant, then

–  N+N/8+N/8+N/8+…N/8 ~ O(Nlog(N))

•  Does your FastForward processor performance on coarse (coasrer)
grids impede overall multigrid performance?

–  Are there architectural features you can exploit to avoid this?
–  If so, how do you succinctly specialize code to exploit them?

 (i.e. do we really have to write every routine twice?)
–  Are there other approaches to ensure coarse grid operations are not a

bottleneck?

27

28

Acknowledgements
•  All authors from Lawrence Berkeley National Laboratory were supported by

the DOE Office of Advanced Scientific Computing Research under contract
number DE-AC02-05CH11231.

•  This research used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.

•  This research used resources of the Argonne Leadership Computing Facility
at Argonne National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under contract DE-AC02-06CH11357.

•  This research used resources of the Oak Ridge Leadership Facility at the
Oak Ridge National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725.

Memory Capacity Issues

•  In AMR MG Combustion codes, you need a separate field/component/vector
for each chemical species (NH4, CO2, …) on each AMR level

•  As such, given today’s memory constraints, the size of each process’s
subdomain might be small (643…1283)

•  Future machines may have 10x more memory than today’s…
–  100GB of fast memory
–  1TB of slow memory

•  Why not run larger problems to amortize inefficiencies?
–  Application scientists would prefer to use it for new physics or chemistry.

 e.g. increase the number of chemical species from 20 to 100
–  AMR codes could use the memory selectively (where needed) with deeper AMR hierarchies.
–  The memory hierarchy can be used to prioritize the active working set…

 e.g. fit the MG solve on current species of the current AMR level in fast memory

•  If performance is not feasible, we need to know soon as significant
changes to LMC would be required to increase on-node parallelism

29

Choice of Smoother

•  In the manycore era, the choice of smoother:
–  must balance mathematical (convergence) and architectural constraints (TLP/SIMD/BW).
–  may see up to a 100x performance hit without threading on a Xeon Phi (MIC)

•  Using HPGMG-FV we observed differences in performance among smoothers…
–  GSRB and w-Jacobi were the easiest to use
–  SYMGS required fewer total smooths, but its performance per smooth was very poor.
–  Based on Rob/Ulrike’s paper, L1 Jacobi was made as fast as w-Jacobi
–  Chebyshev was fastest in the net (smooth was little slower, but required fewer smooths)
–  Unfortunately, Chebyshev is a bit twitchy as it needs eigenvalue estimates.

30

Gauss-Seidel
Red-Black

Chebyshev
Polynomial

weighted
Jacobi

L1
Jacobi

SYMGS
(blocked)

Convergence

Threading?

SIMD?

good
(2-3 GSRB)

very good
Degree 2 or 4

slow
(8+ smooths)

slow
(8+ smooths)

very good
(2 SYMGS)

spectral properties
of the operator

not necessarily
stable

yes yes yes yes extremely
difficult

inefficient
(stride-2) yes yes yes extremely

difficult

Requirements
(in addition to D-1)

L1 norm N/A to high-order
operators

Cell-Centered MG
•  Values can represent…

–  cell averages (cell-centered)
–  face averages (face-centered)

31

cell-centered
value

j face centered

i face
centered

value

cell-centered
restriction

face-centered
restriction

!  Solutions variables are usually cell-
centered, but boundary values exist
on cell faces (face-centered)
"  enforcing a homogeneous Dirichlet

boundary condition is not simply
forcing the ghost cells to zero.

"  Rather one has to select a value for
each ghost cell that allows one to
interpolate to zero on the face.

!  Restriction/Prolongation can be
either cell- or face-centered.

!  In piecewise constant restriction,
coarse grid elements are the
average value of the region
covered by fine grid elements

•  Turn
around
time

•  Flat lines
= perfect
strong
scaling

Strong scaling: DoF/sec vs Time

ISC, Frankfurt Germany, 21 June 2016

DOE ACME v1
target (5 SYPD)

