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HPGMG Project Design Goals 

1.  General benchmarking efforts and provide 
compact benchmark codes to aid engineers 
& centers to design & deploy well balanced 
machines 
–  Benchmark code with sensitivities to machine 

metrics that  correlate well with applications 
•  Presented some data from LLNL at ISC ’14 

2.  HPGMG-FV: Supercomputer ranking metric 
–  A specification and packaging built from Sam’s 

finite volume code base 
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HPGMG-FV design 

•  Compact stand alone: C + MPI (+OMP, CUDA) 
•  Conceptually simple: solve Ax = b with multigrid 
•  Finite Volume, 3D non-constant coef. Laplacian 
•  Non-iterative (full) geometric multigrid solver 
•  Metric: equations (N) solved / sec 

– Map to flops/sec: 1200N (not exact nor well defined) 
•  HPL uses 2N3 map 
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Stable HPGMG-FV metric 

•  This year transitioned to 4th order accurate discretization 
•  First “official” 4th order list, stable specification 
•  Sensitive to more machine parameters than 2nd order: 

1.  MPI message rates: 3x messages/op-apply 
2.  MPI bandwidth: 2x message sizes (two ghost cell layers) 
3.  More pressure on cache: ~2x working set size 
4.  Large stencil, many data streams 
5.  Wide range of message sizes: coarse grids are smaller 
6.  Full MG: more small messages (more coarse grid visits) 

•  More floating point intensive (flop/byte ~1) 
–  With respect to “book-end” strategy of HPL-HPCG 

•  We try to be in the middle 
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Maintainable, durable (+ dynamic range) 

•  Experience TOP500, HPL, other benchmarking initiatives 
–  Simplicity key 

•  Need unambiguous specification 
–  Can not afford to micro-manage or adjudicate each submission 

•  Dynamic range, or strong scaling, important to applications 
–  But Constraints interfere with incorporating dynamic range in 

metric 
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Criterion HPGMG-FV HPL HPCG 

Architecture Free ✔ ✔ Minimum 25% “main memory” usage 
Scale/PM Free ✔ ✔ Gauss-Seidel only on “sub domains” 
Math/algorithm 
fully specified 

✔ ✔ 
(!Str) 

Vertex order not specified for G-S, 
affects convergence, affects metric 

Dynamic range 1, 1/8, 1/64 R½ 



HPGMG-FV ranking, June ‘16 
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# Site Sys Arch 109  
1* 

DOF 
1/8 

Sec 
1/64 

MPI 
*the 

OMP 
metric 

#GPU # 
HPL 

#HP
CG 

1 DOE/
ANL/USA 

Mira IBM-
BGQ 

500 313 107 49K 64 0 6 ~6 

Mira Base 395 286 107 49K 64 0 
2 HLRS/

Germany 
Hazel 
Hen 

Cray 
XC40 

495 411 221 15K 12 0 9 ~7 

3 DOE/
ORNL/US 

Titan Cray 
XK7 

440 163 39 16K 4 1 3 ~4 

4 KAUST/
SA 

Sha. II Cray 
XC40 

326 287 175 12K 16 0 10 ~10 

5 DOE/
NER/USA 

Edison Cray 
XC30 

296 246 127 11K 12 0 49 ~16 

6 CSCS 
Swiss 

Piz 
Daint 

Cray 
XC30 

153 69 19 4K 8 1 8 ~9 

8 HLRS/G NEC  SX-
AC 

3.3 1.8 .75 256 1 0 - - 



Turn around time: DoF/sec vs. Time 
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1 

1/8 

1/64 

•  Dynamic range: 
–  Same 

concurrency 
–  Reduce problem 

size 
–  Flat lines perfect 

•  Strong scaling: 
–  Same problem 

size 
–  Increase 

concurrency 
•  Weak scaling: 

–  Increase both 



Turn around time: DoF/sec vs. Time 
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Machine Size 
(the metric) 

•  Dynamic range: 
–  Same 

concurrency 
–  Reduce problem 

size 
–  Flat lines perfect 

•  Strong scaling: 
–  Same problem 

size 
–  Increase 

concurrency 
•  Weak scaling: 

–  Increase both 



Turn around time: DoF/sec vs. Time 
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•  Dynamic range: 
–  Same 

concurrency 
–  Reduce problem 

size 
–  Flat lines perfect 

•  Strong scaling: 
–  Same problem 

size 
–  Increase 

concurrency 
•  Weak scaling: 

–  Increase both 

Network and memory latency 
dominate (flat line perfect) 



•  STREAM 
proxy 
(usually) 
– On right 

•  Balance of 
latencies to 
memory 
capacity 

•  Roll-over 
– On left 

Turn around time: DoF/sec vs. Time 
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(generally) more 
memory, hides latencies 

Roll Over 

Minimum turn around time 

DOE ACME v1 
target (5 SYPD) 



•  Dynamic range: 
–  Same 

concurrency 
–  Reduce 

problem size 
•  Strong scaling: 

–  Same problem 
size 

–  Increase 
concurrency 

•  Weak scaling: 
–  Increase both 

Turn around time: DoF/sec vs. Time 

ISC, Frankfurt Germany, 21 June 2016 



Consider a dynamic range metric 

•  Consider the sum for the three data points 
(dof/sec) and not the maximum 

–  Convergent series, will roll over eventually 
1.  Hazel Hen   1130  (x109 dof/second) 
2.  Mira    920 
3.  Shaheen II   788 
4.  Edison    669 
5.  Titan    642 
6.  Piz Daint   240 
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Community buy-in & related efforts 

1.  Vendor buy-in 
–  Nvidia optimized 2nd & 4th order for Kepler & Pascal 

•  MPI + OpenMP + CUDA 
–  Intel recently started KNL optimizing (Sam already started) 

2.  Sam Williams’ GMG codes used in several efforts 
•  HPGMG-FV is the ranking metric instantiation …  

–  DOE FastForward2: selected as a 1/6 proxy apps 
–  DOE DEGAS project:  

•  investigated one-sided UPC++ implementations 
•  PYGMG (python version HPGMG) with 
•  SEJITS (selective just in time specialization) 

–  DOE DTEC project: Halide stencil DSL of GMG 
–  DOE Traleika Glacier project (Intel) 

•  OCR dynamic task runtime (3 versions, low to higher level) 
–  Other groups: 

•  UCB, MIT, Rice, ORNL, SDSC, Riken, HLRS, KAUST, NREL 
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Submissions SC16 (hpgmg.org) 

•  Welcome submissions, collaborations & questions 
–  Contact hpgmg-forum@hpgmg.org 
–  Visit hpgmg.org 
–  Submission instructions: hpgmg.org/fv 

•  Next list release at SC16 BoF, more architectures: 
–  Accelerators: TH-2A, … 
–  Cluster of commodity processors, infiniband 

•  SuperMUC (all 17 islands, only have data with 4), … 
–  K: want full scale 4th order data and G-S optimization 
–  More, THL … 

•  Our repositories 
–  OpenMP: bitbucket.org/hpgmg/hpgmg 
–  CUDA: bitbucket.org/nsakharnykh/hpgmg-cuda 
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Thank you 
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https://hpgmg.org/ 
https://bitbucket.org/hpgmg/hpgmg 
Mark Adams 
Jed Brown 
John Shalf  
Erich Strohmaier  
Brian Van Straalen 
Sam Williams 



…. More back ground 
4 architectures on list 
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1) Nvidia GPUs 
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# Site Systm Arch. 109 x 
h* 

DOF/ 
2h 

sec 
4h 

MPI OMP GPU HPL
rank 

1 DOE/ANL/
USA 

Mira IBM-
BGQ 

500 313 107 49K 64 0 5 

Mira (Base) 395 286 107 49K 64 0 
2 HLRS/

Germany 
Hazel 
Hen 

Cray 
XC40 

495 411 221 15K 12 0 8 

3 DOE/
ORNL/US 

Titan Cray 
XK7 

440 163 39 16K 4 1 2 

4 KAUST/SA Sha. II Cray 
XC40 

326 287 175 12K 16 0 9 

5 DOE/NER/
USA 

Edison Cray 
XC30 

296 246 127 11K 12 0 40 

6 CSCS 
Swiss 

Piz 
Daint 

Cray 
XC30 

153 69 19 4K 8 1 7 

8 HLRS/
Germany 

NEC  SX-
ACE 

3.3 
* The  

1.8 
metric 

.75 256 1 0 - 



2) Light-weight in-order cores 
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# Site Systm Arch. 109 x 
h* 

DOF/ 
2h 

sec 
4h 

MPI OMP GPU HPL
rank 

1 DOE/ANL/
USA 

Mira IBM-
BGQ 

500 313 107 49K 64 0 5 

Mira (Base) 395 286 107 49K 64 0 
2 HLRS/

Germany 
Hazel 
Hen 

Cray 
XC40 

495 411 221 15K 12 0 8 

3 DOE/
ORNL/US 

Titan Cray 
XK7 

440 163 39 16K 4 1 2 

4 KAUST/SA Sha. II Cray 
XC40 

326 287 175 12K 16 0 9 

5 DOE/NER/
USA 

Edison Cray 
XC30 

296 246 127 11K 12 0 40 

6 CSCS 
Swiss 

Piz 
Daint 

Cray 
XC30 

153 69 19 4K 8 1 7 

8 HLRS/
Germany 

NEC  SX-
ACE 

3.3 
* The  

1.8 
metric 

.75 256 1 0 - 



3) Cray – Xeon processors 

ISC, Frankfurt Germany, 21 June 2016 

# Site Systm Arch. 109 x 
h* 

DOF/ 
2h 

sec 
4h 

MPI OMP GPU HPL
rank 

1 DOE/ANL/
USA 

Mira IBM-
BGQ 

500 313 107 49K 64 0 5 

Mira (Base) 395 286 107 49K 64 0 
2 HLRS/

Germany 
Hazel 
Hen 

Cray 
XC40 

495 411 221 15K 12 0 8 

3 DOE/
ORNL/US 

Titan Cray 
XK7 

440 163 39 16K 4 1 2 

4 KAUST/SA Sha. II Cray 
XC40 

326 287 175 12K 16 0 9 

5 DOE/NER/
USA 

Edison Cray 
XC30 

296 246 127 11K 12 0 40 

6 CSCS 
Swiss 

Piz 
Daint 

Cray 
XC30 

153 69 19 4K 8 1 7 

8 HLRS/
Germany 

NEC  SX-
ACE 

3.3 
* The  

1.8 
metric 

.75 256 1 0 - 



4) NEC vector architecture 
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# Site Systm Arch. 109 x 
h* 

DOF/ 
2h 

sec 
4h 

MPI OMP GPU HPL
rank 

1 DOE/ANL/
USA 

Mira IBM-
BGQ 

500 313 107 49K 64 0 5 

Mira (Base) 395 286 107 49K 64 0 
2 HLRS/

Germany 
Hazel 
Hen 

Cray 
XC40 

495 411 221 15K 12 0 8 

3 DOE/
ORNL/US 

Titan Cray 
XK7 

440 163 39 16K 4 1 2 

4 KAUST/SA Sha. II Cray 
XC40 

326 287 175 12K 16 0 9 

5 DOE/NER/
USA 

Edison Cray 
XC30 

296 246 127 11K 12 0 40 

6 CSCS 
Swiss 

Piz 
Daint 

Cray 
XC30 

153 69 19 4K 8 1 7 

8 HLRS/
Germany 

NEC  SX-
ACE 

3.3 1.8 .75 256 1 0 - 



Dynamic range, DDR BW, cache size 
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# Site Systm Arch. 109 x 
h* 

DOF/ 
2h 

sec 
4h 

MPI OMP GPU HPL
rank 

1 DOE/ANL/
USA 

Mira IBM-
BGQ 

500 313 107 49K 64 0 5 

Mira (Base) 395 286 107 49K 64 0 
2 HLRS/

Germany 
Hazel 
Hen 

Cray 
XC40 

495 411 221 15K 12 0 8 

3 DOE/
ORNL/US 

Titan Cray 
XK7 

440 163 39 16K 4 1 2 

4 KAUST/SA Sha. II Cray 
XC40 

326 287 175 12K 16 0 9 

5 DOE/NER/
USA 

Edison Cray 
XC30 

296 246 127 11K 12 0 40 

6 CSCS 
Swiss 

Piz 
Daint 

Cray 
XC30 

153 69 19 4K 8 1 7 

8 HLRS/
Germany 

NEC  SX-
ACE 

3.3 
* The  

1.8 
metric 

.75 256 1 0 - 



Geometric Multigrid 

•  Extremely fast/efficient…   
–  O(N) computational complexity (#flops) 
–  O(N) DRAM data movement (#bytes) 
–  O(N0.66) MPI data movement 
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“MG V-cycle” 



Dominated by 
On-Node Performance 

Dominated by 
MPI Performance 

Overhead 
Dominates 

Ideal Performance 
•  Nominally, multigrid has three 

components that affect 
performance 

–  DRAM data movement and flop’s 
to perform each stencil 

–  MPI data movement for halo/
ghost zone exchanges 

–  latency/overhead for each 
operation (MPI when it matters) 

•  These are constrained by 
–  DRAM and flop rates 
–  MPI P2P Bandwidth 
–  MPI overhead, OpenMP/CUDA 

overheads, etc… 
•  The time spent in each of these 

varies with level in the v-cycle 
–  coarse grids have ⅛ the volume 

(number of cells), but ¼ the 
surface area (MPI message size) 
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Faster Machines? 
•  If one just increases DRAM 

bandwidth by 10x, then the code 
becomes increasingly dominated 
by MPI P2P communication 

•  If one improves just DRAM and 
MPI bandwidth, the code will 
eventually be dominated by 
CUDA, OpenMP, and MPI 
overheads. 

•  Unfortunately, the overheads are 
hit O(logN) times. 

•  Thus, if overhead dominates (flops 
and bytes are free), then MGSolve 
Time looks like O(logN) 

•  Co-Design for MG requires a 
balanced scaling of flop/s, GB/s, 
memory capacities, and 
overheads. 

24 

Level in the V-Cycle 
Ti

m
e 

in
 C

om
po

ne
nt

 in
 L

ev
el

 

Overhead / Latency 



FMG 
•  HPGMG-FV implements Full Multigrid (FMG). 
•  FMG uses an F-Cycle with a V-Cycle at each level. 
•  No iterating.  One global reduction (to calculate the final residual) 
•  Essentially, an O(N) direct solver (discretization error in 1 pass) 
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Smooth 

Residual 

Restrict 

Bottom Solve 

Interpolate 

Interpolate (High Order) 

!  Fine grids (those in slow “capacity” memory) are accessed only twice 
!  Coarser grids (those that have progressively smaller working sets) are 

accessed progressively more 
!  Same routines are used many times with highly varied working sets 
!  Coarsest grids are likely latency-limited (run on host?) 
!  FMG sends O(log2(P)) messages (needs low overhead communication) 
!  Stresses many aspect of the system (memory hierarchy, network, compute, 

threading overheads, heterogeneity, …) 



HPGMG-FV detailed timing…. 
                                     0            1            2            3            4            5            6            7            8            9
box dimension                    128^3         64^3         32^3         16^3          8^3          8^3          8^3          4^3          2^3          9^3        total
------------------        ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
smooth                        0.083160     0.009769     0.002024     0.000753     0.000592     0.000711     0.000833     0.001602     0.001382     0.000000     0.100826
residual                      0.018734     0.000940     0.000204     0.000088     0.000073     0.000087     0.000102     0.000181     0.000158     0.000155     0.020721
applyOp                       0.000000     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000     0.001907     0.001907
BLAS1                         0.004449     0.000115     0.000057     0.000053     0.000064     0.000069     0.000082     0.000206     0.000197     0.014692     0.019984
BLAS3                         0.000000     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000
Boundary Conditions           0.000000     0.000308     0.000080     0.000017     0.000005     0.000005     0.000005     0.000013     0.000014     0.000011     0.000458
Restriction                   0.000922     0.000350     0.000297     0.000141     0.000435     0.000363     0.000445     0.000603     0.000790     0.000000     0.004346
  local restriction           0.000915     0.000342     0.000288     0.000130     0.000032     0.000037     0.000042     0.000129     0.000146     0.000000     0.002062
  pack MPI buffers            0.000001     0.000001     0.000000     0.000001     0.000001     0.000001     0.000001     0.000001     0.000001     0.000000     0.000007
  unpack MPI buffers          0.000001     0.000001     0.000001     0.000001     0.000095     0.000106     0.000124     0.000140     0.000224     0.000000     0.000694
  MPI_Isend                   0.000001     0.000000     0.000001     0.000001     0.000001     0.000001     0.000001     0.000001     0.000001     0.000000     0.000007
  MPI_Irecv                   0.000001     0.000001     0.000001     0.000001     0.000035     0.000045     0.000061     0.000056     0.000063     0.000000     0.000263
  MPI_Waitall                 0.000000     0.000001     0.000001     0.000001     0.000263     0.000164     0.000205     0.000263     0.000340     0.000000     0.001239
Interpolation                 0.002921     0.001742     0.001107     0.000369     0.000499     0.000579     0.000741     0.000631     0.000740     0.000000     0.009329
  local interpolation         0.002916     0.001735     0.001098     0.000358     0.000068     0.000077     0.000085     0.000137     0.000147     0.000000     0.006621
  pack MPI buffers            0.000000     0.000000     0.000001     0.000001     0.000157     0.000179     0.000202     0.000147     0.000238     0.000000     0.000926
  unpack MPI buffers          0.000000     0.000000     0.000001     0.000001     0.000001     0.000001     0.000001     0.000001     0.000002     0.000000     0.000009
  MPI_Isend                   0.000000     0.000000     0.000001     0.000001     0.000131     0.000154     0.000196     0.000154     0.000185     0.000000     0.000822
  MPI_Irecv                   0.000000     0.000000     0.000001     0.000001     0.000001     0.000001     0.000001     0.000001     0.000001     0.000000     0.000007
  MPI_Waitall                 0.000001     0.000001     0.000001     0.000001     0.000132     0.000155     0.000241     0.000176     0.000150     0.000000     0.000856
Ghost Zone Exchange           0.010486     0.005997     0.003671     0.003480     0.003963     0.004767     0.005602     0.007449     0.007796     0.002098     0.055309
  local exchange              0.000003     0.000003     0.000004     0.000005     0.000006     0.000007     0.000008     0.001059     0.001659     0.001838     0.004589
  pack MPI buffers            0.001327     0.000467     0.000442     0.000518     0.000624     0.000743     0.000863     0.000991     0.001208     0.000026     0.007210
  unpack MPI buffers          0.000473     0.000455     0.000485     0.000593     0.000738     0.000878     0.001019     0.001130     0.001331     0.000025     0.007125
  MPI_Isend                   0.000302     0.000339     0.000450     0.000781     0.000937     0.001143     0.001334     0.001515     0.001190     0.000018     0.008009
  MPI_Irecv                   0.000093     0.000096     0.000140     0.000165     0.000210     0.000250     0.000299     0.000313     0.000257     0.000012     0.001835
  MPI_Waitall                 0.008260     0.004603     0.002103     0.001355     0.001370     0.001656     0.001970     0.002306     0.002008     0.000011     0.025641
MPI_collectives               0.001312     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000     0.002378     0.003691
------------------        ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Total by level                0.122319     0.018799     0.007384     0.004927     0.005706     0.006680     0.008064     0.010724     0.010967     0.021933     0.217503

   Total time in MGBuild    225.675795 seconds
   Total time in MGSolve      0.217941 seconds
      number of v-cycles             1
Bottom solver iterations            70

            Performance      4.489e+11 DOF/s

calculating error...
 h =  2.170138888888889e-04  ||error|| =  4.595122248560908e-11
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How sensitive is exascale to  
operations with limited parallelism? 

•  MG’s computational complexity is premised on the assumption that N/8 flops 
requires N/8 time.  

–  N+N/8+N/64… = O(N) flops ~ O(N) time 
•  Today, the performance of MIC/GPU processors decreases substantially 

when parallelism falls below a certain threshold (underutilization) 
•  If time ceases to be tied to N but saturates at some constant, then 

–  N+N/8+N/8+N/8+…N/8 ~ O( Nlog(N) ) 

•  Does your FastForward processor performance on coarse (coasrer) 
grids impede overall multigrid performance? 

–  Are there architectural features you can exploit to avoid this? 
–  If so, how do you succinctly specialize code to exploit them? 

 (i.e. do we really have to write every routine twice?) 
–  Are there other approaches to ensure coarse grid operations are not a 

bottleneck? 
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Memory Capacity Issues 

•  In AMR MG Combustion codes, you need a separate field/component/vector 
for each chemical species (NH4, CO2, …) on each AMR level 

•  As such, given today’s memory constraints, the size of each process’s 
subdomain might be small (643…1283) 

•  Future machines may have 10x more memory than today’s… 
–  100GB of fast memory 
–  1TB of slow memory 

•  Why not run larger problems to amortize inefficiencies? 
–  Application scientists would prefer to use it for new physics or chemistry. 

 e.g. increase the number of chemical species from 20 to 100 
–  AMR codes could use the memory selectively (where needed) with deeper AMR hierarchies. 
–  The memory hierarchy can be used to prioritize the active working set… 

 e.g. fit the MG solve on current species of the current AMR level in fast memory 

•  If performance is not feasible, we need to know soon as significant 
changes to LMC would be required to increase on-node parallelism 
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Choice of Smoother 

•  In the manycore era, the choice of smoother: 
–  must balance mathematical (convergence) and architectural constraints (TLP/SIMD/BW). 
–  may see up to a 100x performance hit without threading on a Xeon Phi (MIC) 

•  Using HPGMG-FV we observed differences in performance among smoothers… 
–  GSRB and w-Jacobi were the easiest to use 
–  SYMGS required fewer total smooths, but its performance per smooth was very poor. 
–  Based on Rob/Ulrike’s paper, L1 Jacobi was made as fast as w-Jacobi 
–  Chebyshev was fastest in the net (smooth was little slower, but required fewer smooths) 
–  Unfortunately, Chebyshev is a bit twitchy as it needs eigenvalue estimates. 
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Gauss-Seidel 
Red-Black 

Chebyshev 
Polynomial 

weighted 
Jacobi 

L1 
Jacobi 

SYMGS 
(blocked) 

Convergence 

Threading? 

SIMD? 

good 
(2-3 GSRB) 

very good 
Degree 2 or 4 

slow 
(8+ smooths) 

slow 
(8+ smooths) 

very good 
(2 SYMGS) 

spectral properties 
of the operator 

not necessarily 
stable 

yes yes yes yes extremely 
difficult 

inefficient 
(stride-2) yes yes yes extremely 

difficult 

Requirements 
(in addition to D-1) 

L1 norm N/A to high-order 
operators 



Cell-Centered MG 
•  Values can represent… 

–  cell averages (cell-centered) 
–  face averages (face-centered) 
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cell-centered
value

j face  centered

i face 
centered

value

cell-centered
restriction

face-centered
restriction

!  Solutions variables are usually cell-
centered, but boundary values exist 
on cell faces (face-centered) 
"  enforcing a homogeneous Dirichlet 

boundary condition is not simply 
forcing the ghost cells to zero. 

"  Rather one has to select a value for 
each ghost cell that allows one to 
interpolate to zero on the face. 

!  Restriction/Prolongation can be 
either cell- or face-centered. 

!  In piecewise constant restriction, 
coarse grid elements are the 
average value of the region 
covered by fine grid elements 



•  Turn 
around 
time 

•  Flat lines 
= perfect 
strong 
scaling 

Strong scaling: DoF/sec vs Time 
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DOE ACME v1 
target (5 SYPD) 


