
3 Common and unusual finite elements
By Robert C. Kirby, Anders Logg, Marie E. Rognes and Andy R. Terrel

This chapter provides a glimpse of the considerable range of finite elements in the literature.
Many of the elements presented here are implemented as part of the FEniCS Project already; some
are future work. The universe of finite elements extends far beyond what we consider here. In
particular, we consider only simplicial, polynomial-based elements. We thus bypass elements defined
on quadrilaterals and hexahedra, composite and macro-element techniques, as well as XFEM-type
methods. Even among polynomial-based elements on simplices, the list of elements can be extended.
Nonetheless, this chapter presents a comprehensive collection of some of the most common, and
some more unusual, finite elements.

3.1 The finite element definition

The Ciarlet definition of a finite element was first introduced in a set of lecture notes by Ciarlet (1975)
and became popular after his 1978 book (Ciarlet, 2002). It remains the standard definition today, see
for example Brenner and Scott (2008). The definition, which was also presented in Chapter 2, reads
as follows:

Definition 3.1 (Finite element (Ciarlet, 2002)) A finite element is defined by a triple (T,V ,L), where

• the domain T is a bounded, closed subset of Rd (for d = 1, 2, 3, . . . ) with nonempty interior and piecewise
smooth boundary;

• the space V = V(T) is a finite dimensional function space on T of dimension n;

• the set of degrees of freedom (nodes) L = {�1, �2, . . . , �n} is a basis for the dual space V′; that is, the
space of bounded linear functionals on V .

Similar ideas were introduced earlier in Ciarlet and Raviart (1972)1, in which unisolvence2 of a set
of interpolation points {xi}i was discussed. This is closely related to the unisolvence of L when the
degrees of freedom are given by by �i(v) = v(xi). Conditions for uniquely determining a polynomial
based on interpolation of function values and derivatives at a set of points was also discussed in
Bramble and Zlámal (1970), although the term unisolvence was not used.

1The Ciarlet triple was originally written as (K, P, Σ) with K denoting T, P denoting V , and Σ denoting L.
2To check whether a given set of linear functionals is a basis for V′, one may check whether it is unisolvent for V ; that is,

for v ∈ V , �i(v) = 0 for i = 1, . . . , n if and only if v = 0.
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For any finite element, one may define a local basis for V that is dual to the degrees of freedom.
Such a basis {φT

1 , φT
2 . . . , φT

n} satisfies �i(φ
T
j ) = δij for 1 � i, j � n and is called the nodal basis. It is

typically this basis that is used in finite element computations.
Also associated with a finite element is a local interpolation operator, sometimes called a nodal

interpolant. Given some function f on T, the nodal interpolant is defined by

ΠT( f ) =
n

∑
i=1

�i( f )φT
i , (3.1)

assuming that f is smooth enough for all of the degrees of freedom acting on it to be well-defined.
Once a local finite element space is defined, it is relatively straightforward to define a global finite

element space over a tessellation Th. One defines the global space to consist of functions whose
restrictions to each T ∈ Th lie in the local space V(T) and that also satisfy any required continuity
requirements. Typically, the degrees of freedom for each local element are chosen such that if the
degrees of freedom on a common interface between two adjacent cells T and T′ agree, then a function
will satisfy the required continuity condition.

When constructing a global finite element space, it is common to construct a single reference finite
element (T̂, V̂ , L̂) and map it to each cell in the mesh. As we are dealing with a simplicial geometry,
the mapping between T̂ and each T ∈ Th will be affine. Originally defined for the purpose of error
estimation, but also useful for computation, is the notion of affine equivalence. Let FT : T̂ → T denote
this affine map. Let v ∈ V . The pullback associated with the affine map is given by F∗(v)(x̂) =
v(FT(x̂)) for all x̂ ∈ T̂. Given a functional �̂ ∈ V̂ ′, its pushforward acts on a function in v ∈ V by
F∗(�̂)(v) = �̂(F∗(v)).

Definition 3.2 (Affine equivalence) Let (T̂, V̂ , L̂) and (T,V ,L) be finite elements and FT : T̂ → T be a
non-degenerate affine map. The finite elements are affine equivalent if F∗(V) = V̂ and F∗(L̂) = L.

One consequence of affine equivalence is that only a single nodal basis needs to be constructed, and
then it can be mapped to each cell in a mesh. Moreover, this idea of equivalence can be extended
to some vector-valued elements when certain kinds of Piola mappings are used. In this case, the
affine map is the same, but the pull-back and push-forward are appropriately modified. It is also
worth stating that not all finite elements generate affine equivalent or Piola-equivalent families. The
Lagrange elements are affine equivalent in H1, but the Hermite and Argyris elements are not. The
Raviart–Thomas elements are Piola-equivalent in H(div), while the Mardal–Tai–Winther elements
are not.

A dictionary of the finite elements discussed in this chapter is presented in Table 3.1.

3.2 Notation

• The space of polynomials of degree up to and including q on a domain T ⊂ Rd is denoted by
Pq(T) and the corresponding d-vector fields by [Pq(T)]d.

• A finite element space E is called V-conforming if E ⊆ V. If not, it is called (V-) nonconforming.

• The elements of L are usually referred to as the degrees of freedom of the element (T,V ,L).
When describing finite element families, it is usual to illustrate the degrees of freedom with
a certain schematic notation. We summarize the notation used here in the list below and in
Figure 3.1.
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Finite element Short name Sobolev space Conforming

(Quintic) Argyris ARG H2 Yes
Arnold–Winther AW H(div; S) Yes

Brezzi–Douglas–Marini BDM H(div) Yes
Crouzeix–Raviart CR H1 No

Discontinuous Lagrange DG L2 Yes
(Cubic) Hermite HER H2 No

Lagrange CG H1 Yes
Mardal–Tai–Winther MTW H1/H(div) No/Yes
(Quadratic) Morley MOR H2 No
Nédélec first kind NED1 H(curl) Yes

Nédélec second kind NED2 H(curl) Yes
Raviart–Thomas RT H(div) Yes

Table 3.1: A dictionary of the finite elements discussed in this chapter, including full name and the
respective (highest order) Sobolev space to which the elements are conforming/nonconforming.

point evaluation

evaluation of all first derivatives

evaluation of all second derivatives

evaluation of directional component

evaluation of directional derivative

evaluation of interior moments

Figure 3.1: Summary of
notation used for degrees of
freedom. In this example, the
three concentric spheres
indicate a set of three degrees
of freedom defined by interior
moments.

Point evaluation. A black sphere (disc) at a point x denotes point evaluation of the function v
at that point:

�(v) = v(x). (3.2)

For a vector valued function v with d components, a black sphere denotes evaluation of
all components and thus corresponds to d degrees of freedom.

Evaluation of all first derivatives. A dark gray, slightly larger sphere (disc) at a point x denotes
point evaluation of all first derivatives of the function v at that point:

�i(v) =
∂v(x)

∂xi
, i = 1, . . . , d, (3.3)

thus corresponding to d degrees of freedom.

Evaluation of all second derivatives. A light gray, even larger sphere (disc) at a point x de-
notes point evaluation of all second derivatives of the function v at that point:

�ij(v) =
∂2v(x)
∂xi∂xj

, 1 � i � j � d, (3.4)

thus corresponding to d(d + 1)/2 degrees of freedom.
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Evaluation of directional component. An arrow at a point x in a direction n denotes evalua-
tion of the vector-valued function v in the direction n at the point x:

�(v) = v(x) · n. (3.5)

The direction n is typically the normal direction of a facet, or a tangent direction of a facet
or edge. We will sometimes use an arrow at a point to denote a moment (integration
against a weight function) of a component of the function over a facet or edge.

Evaluation of directional derivative. A black line at a point x in a direction n denotes evalua-
tion of the directional derivative of the scalar function v in the direction n at the point x:

�(v) = ∇v(x) · n. (3.6)

Evaluation of interior moments. A set of concentric spheres (discs) denotes interior moment
degrees of freedom; that is, degrees of freedom defined by integration against a weight
function over the interior of the domain T. The spheres are colored white-black-white etc.

We note that, for some of the finite elements presented below, the literature will use different
notation and numbering schemes, so that our presentation may be quite different from the original
presentation of the elements. In particular, the families of Raviart–Thomas and Nédélec spaces of the
first kind are traditionally numbered from 0, while we have followed the more recent scheme from
the finite element exterior calculus of numbering from 1.

3.3 H1 finite elements

The space H1 is fundamental in the analysis and discretization of weak forms for second-order
elliptic problems, and finite element subspaces of H1 give rise to some of the best-known finite
elements. Typically, these elements use C0 approximating spaces, since a piecewise smooth function
on a bounded domain is H1 if and only if it is continuous (Braess, 2007, Theorem 5.2). We consider
the classic Lagrange element, as well as a nonconforming example, the Crouzeix–Raviart space. It is
worth noting that the Hermite element considered later is technically only an H1 element, but can
be used as a nonconforming element for smoother spaces. Also, smoother elements such as Argyris
may be used to discretize H1, although this is less common in practice.

3.3.1 The Lagrange element

The best-known and most widely used finite element is the P1 Lagrange element. This lowest-
degree triangle is sometimes called the Courant triangle, after the seminal paper by Courant (1943)
in which variational techniques are used with the P1 triangle to derive a finite difference method.
Sometimes this is viewed as “the” finite element method, but in fact there is a whole family of
elements parametrized by polynomial degree that generalize the univariate Lagrange interpolating
polynomials to simplices, boxes, and other shapes. The Lagrange elements of higher degree offer
higher order approximation properties. Moreover, these can alleviate locking phenomena observed
when using linear elements or give improved discrete stability properties; see Taylor and Hood (1973);
Scott and Vogelius (1985).
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Definition 3.3 (Lagrange element) The Lagrange element (CGq) is defined for q = 1, 2, . . . by

T ∈ {interval, triangle, tetrahedron}, (3.7)

V = Pq(T), (3.8)

�i(v) = v(xi), i = 1, . . . , n(q), (3.9)

where {xi}n(q)
i=1 is an enumeration of points in T defined by

x =

⎧
⎨

⎩

i/q, 0 � i � q, T interval,
(i/q, j/q), 0 � i + j � q, T triangle,
(i/q, j/q, k/q), 0 � i + j + k � q, T tetrahedron.

(3.10)

The dimension of the Lagrange finite element thus corresponds to the dimension of the complete
polynomials of degree q on T and is

n(q) =

⎧
⎨

⎩

q + 1, T interval,
1
2 (q + 1)(q + 2), T triangle,
1
6 (q + 1)(q + 2)(q + 3), T tetrahedron.

(3.11)

The definition above presents one choice for the set of points {xi}. However, this is not the
only possible choice. In general, it suffices that the set of points {xi} is unisolvent and that the
boundary points are located so as to allow C0 assembly. The point set must include the vertices,
q − 1 points on each edge, (q−1)(q−2)

2 points per face, and so forth. The boundary points should
be placed symmetrically so that the points on adjacent cells match. While numerical conditioning
and interpolation properties can be dramatically improved by choosing these points in a clever way
(Warburton, 2005), for the purposes of this chapter the points may be assumed to lie on an equispaced
lattice; see Figures 3.2, 3.3 and 3.4.

Letting Πq
T denote the interpolant defined by the above degrees of freedom of the Lagrange

element of degree q, we have from Brenner and Scott (2008) that

||u − Πq
Tu||H1(T) � C hq

T|u|Hq+1(T), ||u − Πq
Tu||L2(T) � C hq+1

T |u|Hq+1(T). (3.12)

where, here and throughout, C denotes a generic positive constant not depending on hT but de-
pending on the degree q and the aspect ratio of the simplex, and u is a sufficiently regular function
(or vector-field).

Figure 3.2: The linear Lagrange interval, triangle and tetrahedron.
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Figure 3.3: The Lagrange CGq triangle for q = 1, 2, 3, 4, 5, 6.

Figure 3.4: The Lagrange CGq tetrahedron for q = 1, 2, 3, 4, 5, 6.

Vector-valued or tensor-valued Lagrange elements are usually constructed by using a Lagrange
element for each component.

3.3.2 The Crouzeix–Raviart element

The Crouzeix–Raviart element was introduced in Crouzeix and Raviart (1973) as a technique for
solving the stationary Stokes equations. The global element space consists of piecewise linear poly-
nomials, as for the linear Lagrange element. However, in contrast to the Lagrange element, the global
basis functions are not required to be continuous at all points; continuity is only imposed at the mid-
point of facets. The element is hence not H1-conforming, but it is typically used for nonconforming
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Figure 3.5: Illustration of the
Crouzeix–Raviart elements on
triangles and tetrahedra. The
degrees of freedom are point
evaluation at the midpoint of
each facet.

approximations of H1 functions (and vector fields). Other applications of the Crouzeix–Raviart ele-
ment includes linear elasticity (Hansbo and Larson, 2003) and Reissner–Mindlin plates (Arnold and
Falk, 1989).

Definition 3.4 (Crouzeix–Raviart element) The (linear) Crouzeix–Raviart element (CR) is defined by

T ∈ {triangle, tetrahedron}, (3.13)

V = P1(T), (3.14)

�i(v) = v(xi), i = 1, . . . , n. (3.15)

where {xi} are the barycenters (midpoints) of each facet of the domain T.

The dimension of the Crouzeix–Raviart element on T ⊂ Rd is thus

n = d + 1 (3.16)

for d = 2, 3.
Letting ΠT denote the interpolation operator defined by the degrees of freedom, the Crouzeix–

Raviart element interpolates as the linear Lagrange element (Braess, 2007, Chapter 3.I):

||u − ΠTu||H1(T) � C hT |u|H2(T), ||u − ΠTu||L2(T) � C h2
T|u|H2(T). (3.17)

Vector-valued Crouzeix–Raviart elements can be defined by using a Crouzeix–Raviart element for
each component, or by using facet normal and facet tangential components at the midpoints of each
facet as degrees of freedom. The Crouzeix–Raviart element can be extended to higher odd degrees
(q = 3, 5, 7 . . .) (Crouzeix and Falk, 1989).

3.4 H(div) finite elements

The Sobolev space H(div) consists of vector fields for which the components and the weak divergence
are square-integrable. This is a weaker requirement than for a d-vector field to be in [H1]d (for d � 2).
This space naturally occurs in connection with mixed formulations of second-order elliptic problems,
porous media flow, and elasticity equations. For a finite element family to be H(div)-conforming,
each component need not be continuous, but the normal component must be continuous. In order
to ensure such continuity, the degrees of freedom of H(div)-conforming elements usually include
normal components on element facets.

The two main families of H(div)-conforming elements are the Raviart–Thomas and Brezzi–
Douglas–Marini elements. These two families are described below. In addition, the Arnold–Winther
element discretizing the space of symmetric tensor fields with square-integrable row-wise divergence
and the Mardal–Tai–Winther element are included.
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Figure 3.6: Illustration of the degrees of freedom for the first, second and third degree Raviart–
Thomas elements on triangles and tetrahedra. The degrees of freedom are moments of the normal
component against Pq−1 on facets (edges and faces, respectively) and, for the higher degree elements,
interior moments against [Pq−2]

d. Alternatively, as indicated in this illustration, the moments of
normal components may be replaced by point evaluation of normal components.

3.4.1 The Raviart–Thomas element

The Raviart–Thomas element was introduced by Raviart and Thomas (1977). It was the first element
to discretize the mixed form of second-order elliptic equations on triangles. Its element space V
is designed so that it is the smallest polynomial space V ⊂ Pq(T), for q = 1, 2, . . . , from which
the divergence maps onto Pq−1(T). Shortly thereafter, it was extended to tetrahedra and boxes by
Nédélec (1980). It is therefore sometimes referred to as the Raviart–Thomas–Nédélec element. Here,
we label both the two- and three-dimensional versions as the Raviart–Thomas element.

The definition given below is based on the one presented by Nédélec (1980) (and Brezzi and
Fortin (1991)). The original Raviart–Thomas paper used a slightly different form. Moreover, Raviart
and Thomas originally started counting at q = 0. Hence, the lowest degree element is traditionally
called the RT0 element. For the sake of consistency, such that a finite element of polynomial degree q
is included in Pq(T), we here label the lowest degree elements by q = 1 instead (as did also Nédélec).

Definition 3.5 (Raviart–Thomas element) The Raviart–Thomas element (RTq) is defined for q = 1, 2, . . .
by

T ∈ {triangle, tetrahedron}, (3.18)

V = [Pq−1(T)]d + xPq−1(T), (3.19)

L =

{ ∫

f v · n p ds, for a set of basis functions p ∈ Pq−1( f ) for each facet f,
∫

T v · p dx, for a set of basis functions p ∈ [Pq−2(T)]d for q � 2.
(3.20)

As an example, the lowest degree Raviart–Thomas space on triangles is a three-dimensional space
and consists of vector fields of the form

v(x) = α + βx, (3.21)

where α is a vector-valued constant, and β is a scalar constant.
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Figure 3.7: Illustration of the first, second and third degree Brezzi–Douglas–Marini elements on
triangles and tetrahedra. The degrees of freedom are moments of the normal component against
Pq on facets (edges and faces, respectively) and, for the higher degree elements, interior moments
against NED1

q−1. Alternatively, as indicated in this illustration, the moments of normal components
may be replaced by point evaluation of normal components.

The dimension of RTq is

n(q) =
{

q(q + 2), T triangle,
1
2 q(q + 1)(q + 3), T tetrahedron.

(3.22)

Letting Πq
T denote the interpolation operator defined by the degrees of freedom above for q = 1, 2, . . . ,

we have that (Brezzi and Fortin, 1991, Chapter III.3)

||u − Πq
Tu||H(div)(T) � C hq

T |u|Hq+1(T), ||u − Πq
Tu||L2(T) � C hq

T|u|Hq(T). (3.23)

3.4.2 The Brezzi–Douglas–Marini element

The Brezzi–Douglas–Marini element was introduced by Brezzi, Douglas and Marini in two dimen-
sions (for triangles) in Brezzi et al. (1985a). The element can be viewed as an alternative to the
Raviart–Thomas element using a complete polynomial space. It was later extended to three dimen-
sions (tetrahedra, prisms and cubes) in Nédélec (1986) and Brezzi et al. (1987a). The definition given
here is based on that of Nédélec (1986).

The Brezzi–Douglas–Marini element was introduced for mixed formulations of second-order el-
liptic equations. However, it is also useful for weakly symmetric discretizations of the elastic stress
tensor; see Farhloul and Fortin (1997); Arnold et al. (2007).
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Definition 3.6 (Brezzi–Douglas–Marini element) The Brezzi–Douglas–Marini element (BDMq) is
defined for q = 1, 2, . . . by

T ∈ {triangle, tetrahedron}, (3.24)

V = [Pq(T)]d, (3.25)

L =

{ ∫

f v · np ds, for a set of basis functions p ∈ Pq( f ) for each facet f,
∫

T v · p dx, for a set of basis functions p ∈ NED1
q−1(T) for q � 2.

(3.26)

where NED1 refers to the Nédélec H(curl) elements of the first kind, defined below in Section 3.5.1.

The dimension of BDMq is

n(q) =
{

(q + 1)(q + 2), T triangle,
1
2 (q + 1)(q + 2)(q + 3), T tetrahedron.

(3.27)

Letting Πq
T denote the interpolation operator defined by the degrees of freedom for q = 1, 2, . . . , we

have that (Brezzi and Fortin, 1991, Chapter III.3)

||u − Πq
Tu||H(div)(T) � C hq

T|u|Hq+1(T), ||u − Πq
Tu||L2(T) � C hq+1

T |u|Hq+1(T). (3.28)

A slight modification of the Brezzi–Douglas–Marini element constrains the element space V by
only allowing normal components on the boundary of polynomial degree q − 1 (rather than the full
polynomial degree q). Such an element was suggested on rectangles by Brezzi et al. (1987b), and the
triangular analogue was given in Brezzi and Fortin (1991). In similar spirit, elements with differing
degrees on the boundary suitable for varying the polynomial degree between triangles were derived
in Brezzi et al. (1985b).

3.4.3 The Mardal-Tai-Winther element

The Mardal–Tai–Winther element was introduced in Mardal et al. (2002) as a finite element suitable
for the velocity space for both Darcy and Stokes flow in two dimensions. In the Darcy flow equations,
the velocity space only requires H(div)-regularity. Moreover, discretizations based on H1-conforming
finite elements are typically not stable. On the other hand, for the Stokes equations, the veloc-
ity space does stipulate H1-regularity. The Mardal–Tai–Winther element is H(div)-conforming, but
H1-nonconforming. The element was extended to three dimensions in Tai and Winther (2006), but
we only present the two-dimensional case here.

Definition 3.7 (Mardal–Tai–Winther element) The Mardal–Tai–Winther element (MTW) is defined by

T = triangle, (3.29)

V = {v ∈ [P3(T)]2, such that div v ∈ P0(T) and v · n| f ∈ P1(T) for each facet f}, (3.30)

L =

{ ∫

f v · n p ds, for a set of basis functions p ∈ P1( f ) for each facet f,
∫

f v · t ds, for each facet f.
(3.31)

The dimension of MTW is

n = 9. (3.32)
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Figure 3.8: Illustration of the Mardal–Tai–Winther element. The degrees of freedom are two moments
of the normal component on each facet and one moment of the tangential component on each facet.
In this figure, the moments of normal components are illustrated by point evaluation of normal
components.

Figure 3.9: Illustration of the
Arnold–Winther element. The
24 degrees of freedom are point
evaluation at the vertices, the
two first moments of the
normal component of each row
of the tensor field on each facet,
and three interior moments.

Letting ΠT denote the interpolation operator defined by the degrees of freedom, we have that

||u−ΠTu||H1(T) � C hT|u|H2(T), ||u−ΠTu||H(div)(T) � C hT |u|H2(T), ||u−ΠTu||L2(T) � C h2
T|u|H2(T).

(3.33)

3.4.4 The Arnold–Winther element

The Arnold–Winther element was introduced by Arnold and Winther (2002). This paper presented
the first stable mixed (non-composite) finite element for the stress–displacement formulation of
linear elasticity. The finite element used for the stress space is what is presented as the Arnold–
Winther element here. This finite element is a symmetric tensor element that is row-wise H(div)-
conforming. The finite element was introduced for a hierarchy of polynomial degrees and extended
to three-dimensions in Adams and Cockburn (2005) and Arnold et al. (2008), but we only present the
lowest degree two-dimensional case here.

Definition 3.8 (Arnold–Winther element) The (lowest degree) Arnold–Winther element (AW) is defined
by

T = triangle, (3.34)

V = {v ∈ P3(T; S) : div v ∈ P1(T; R2)}, (3.35)

L =

⎧
⎪⎨

⎪⎩

v(xk)ij, for 1 � i � j � 2 at each vertex xk
∫

f ∑2
j=1 vijnj p ds, for a set of basis functions p ∈ P1( f ), on each facet f, 1 � i � 2,

∫

T vij dx, for 1 � i � j � 2.
(3.36)
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The dimension of AW is

n = 24. (3.37)

Letting ΠT denote the interpolation operator defined by the degrees of freedom, we have that

||u − ΠTu||H(div)(T) � C h2
T|u|H3(T), ||u − ΠTu||L2(T) � C h3

T|u|H3(T). (3.38)

3.5 H(curl) finite elements

The Sobolev space H(curl) arises frequently in problems associated with electromagnetism. The
Nédélec elements, also colloquially referred to as edge elements, are much used for such problems, and
stand as a premier example of the power of “nonstandard” (meaning not lowest-degree Lagrange)
finite elements (Nédélec, 1980, 1986). For a piecewise polynomial to be H(curl)-conforming, the
tangential component must be continuous. Therefore, the degrees of freedom for H(curl)-conforming
finite elements typically include tangential components.

There are four families of finite element spaces due to Nédélec, introduced in the papers Nédélec
(1980) and Nédélec (1986). The first (1980) paper introduced two families of finite element spaces
on tetrahedra, cubes and prisms: one H(div)-conforming family and one H(curl)-conforming family.
These families are known as Nédélec H(div) elements of the first kind and Nédélec H(curl) elements
of the first kind, respectively. The H(div) elements can be viewed as the three-dimensional extension
of the Raviart–Thomas elements. (These are therefore presented as Raviart–Thomas elements above.)
The first kind Nédélec H(curl) elements are presented below.

The second (1986) paper introduced two more families of finite element spaces: again, one H(div)-
conforming family and one H(curl)-conforming family. These families are known as Nédélec H(div)
elements of the second kind and Nédélec H(curl) elements of the second kind, respectively. The H(div)
elements can be viewed as the three-dimensional extension of the Brezzi–Douglas–Marini elements.
(These are therefore presented as Brezzi–Douglas–Marini elements above.) The second kind Nédélec
H(curl) elements are presented below.

In his two classic papers, Nédélec considered only the three-dimensional case. However, one can
also define a two-dimensional curl, and two-dimensional H(curl)-conforming finite element spaces.
We present such elements as Nédélec elements on triangles here. Although attributing these elements
to Nédélec may be dubious, we include them for the sake of completeness.

In many ways, Nédélec’s work anticipates the recently introduced finite element exterior calculus
presented in Arnold et al. (2006a), where the first kind spaces appear as P−

q Λk spaces and the second
kind as PqΛk. Moreover, the use of a differential operator (the elastic strain) in Nédélec (1980) to
characterize the function space foreshadows the use of differential complexes in Arnold et al. (2006b).

3.5.1 The Nédélec H(curl) element of the first kind

Definition 3.9 (Nédélec H(curl) element of the first kind) For q = 1, 2, . . . , define the space

Sq(T) = {s ∈ [Pq(T)]d : s(x) · x = 0 ∀ x ∈ T}. (3.39)

The Nédélec element of the first kind (NED1
q) is defined for q = 1, 2, . . . in two dimensions by

T = triangle, (3.40)

V = [Pq−1(T)]2 + Sq(T), (3.41)

L =

{ ∫

e v · t p ds, for a set of basis functions p ∈ Pq−1(e) for each edge e,∫

T v · p dx, for a set of basis functions p ∈ [Pq−2(T)]2, for q � 2,
(3.42)
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Figure 3.10: Illustration of first, second and third degree Nédélec H(curl) elements of the first kind
on triangles and tetrahedra. Note that these elements may be viewed as rotated Raviart–Thomas
elements. For the first degree Nédélec elements, the degrees of freedom are the average value over
edges or, alternatively, the value of the tangential component at the midpoint of edges. Hence the
term “edge elements”.

where t is the edge tangent; and in three dimensions by

T = tetrahedron, (3.43)

V = [Pq−1(T)]3 + Sq(T), (3.44)

L =

⎧
⎪⎨

⎪⎩

∫

e v · t p dl, for a set of basis functions p ∈ Pq−1(e) for each edge e∫

f v × n · p ds, for a set of basis functions p ∈ [Pq−2( f )]2 for each face f , for q � 2,
∫

T v · p dx, for a set of basis functions p ∈ [Pq−3]
3, for q � 3.

(3.45)

The dimension of NED1
q is

n(q) =
{

q(q + 2), T triangle,
1
2 q(q + 2)(q + 3), T tetrahedron.

(3.46)

Letting Πq
T denote the interpolation operator defined by the degrees of freedom above, we have

that (Nédélec, 1980, Theorem 2)

||u − Πq
Tu||H(curl)(T) � C hq

T |u|Hq+1(T), ||u − Πq
Tu||L2(T) � C hq

T |u|Hq(T). (3.47)

3.5.2 The H(curl) Nédélec element of the second kind

Definition 3.10 (Nédélec H(curl) element of the second kind) The Nédélec element of the second kind
(NED2

q) is defined for q = 1, 2, . . . in two dimensions by

T = triangle, (3.48)

V = [Pq(T)]2, (3.49)

L =

{ ∫

e v · t p ds, for a set of basis functions p ∈ Pq(e) for each edge e,∫

T v · p dx, for a set of basis functions p ∈ RTq−1(T), for q � 2.
(3.50)
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Figure 3.11: Illustration of first, second and third degree Nédélec H(curl) elements of the second kind
on triangles. Note that these elements may be viewed as rotated Brezzi–Douglas–Marini elements.

Figure 3.12: Illustration of the
first degree Nédélec H(curl)
elements of the second kind on
tetrahedra.

where t is the edge tangent, and in three dimensions by

T = tetrahedron, (3.51)

V = [Pq(T)]3, (3.52)

L =

⎧
⎨

⎩

∫

e v · t p dl, for a set of basis functions p ∈ Pq(e) for each edge e,∫

f v · p ds, for a set of basis functions p ∈ RTq−1( f ) for each face f , for q � 2
∫

T v · p dx, for a set of basis functions p ∈ RTq−2(T), for q � 3.
(3.53)

The dimension of NED2
q is

n(q) =
{

(q + 1)(q + 2), T triangle,
1
2 (q + 1)(q + 2)(q + 3), T tetrahedron.

(3.54)

Letting Πq
T denote the interpolation operator defined by the degrees of freedom above, we have

that (Nédélec, 1986, Proposition 3)

||u − Πq
Tu||H(curl)(T) � C hq

T |u|Hq+1(T), ||u − Πq
Tu||L2(T) � C hq+1

T |u|Hq+1(T). (3.55)

3.6 L2 finite elements

By L2 elements, one usually refers to finite element spaces where the elements are not in C0. Such
elements naturally occur in mixed formulations of the Poisson equation, Stokes flow, and elasticity.
Alternatively, such elements can be used for nonconforming methods imposing the desired continuity
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weakly instead of directly. The discontinuous Galerkin (DG) methods provide a typical example. In
this case, the numerical flux of element facets is assembled as part of the weak form; numerous vari-
ants of DG methods have been defined with different numerical fluxes. DG methods were originally
developed for hyperbolic problems but have been successfully applied to many elliptic and parabolic
problems. Moreover, the decoupling of each individual element provides an increased opportunity
for parallelism and hp-adaptivity.

3.6.1 Discontinuous Lagrange

Definition 3.11 (Discontinuous Lagrange element) The discontinuous Lagrange element (DGq) is de-
fined for q = 0, 1, 2, . . . by

T ∈ {interval, triangle, tetrahedron}, (3.56)

V = Pq(T), (3.57)

�i(v) = v(xi), (3.58)

where {xi}n(q)
i=1 is an enumeration of points in T defined by

x =

⎧
⎨

⎩

i/q, 0 � i � q, T interval,
(i/q, j/q) 0 � i + j � q, T triangle,
(i/q, j/q, k/q) 0 � i + j + k � q, T tetrahedron.

(3.59)

The dimension of DGq is

n(q) =

⎧
⎨

⎩

q + 1, T interval,
1
2 (q + 1)(q + 2), T triangle,
1
6 (q + 1)(q + 2)(q + 3), T tetrahedron.

(3.60)

Letting Πq
T denote the interpolation operator defined by the degrees of freedom above, the inter-

polation properties of the DGq elements of degree q are:

||u − Πq
Tu||L2(T) � C hq+1

T |u|Hq+1(T). (3.61)

3.7 H2 finite elements

The H2 elements are commonly used in the approximation of fourth-order problems, or for other
spaces requiring at least C1 continuity. Due to the restrictive nature of the continuity requirement,
conforming elements are often of a high polynomial degree, but lower degree nonconforming ele-
ments have proven to be successful. Therefore, we here consider the conforming Argyris element
and the nonconforming Hermite and Morley elements.

3.7.1 The Argyris element

The Argyris element (Argyris et al., 1968; Ciarlet, 2002) is based on the space P5(T) of quintic poly-
nomials over some triangle T. It can be pieced together with full C1 continuity between elements and
C2 continuity at the vertices of a triangulation.

Definition 3.12 (Argyris element) The (quintic) Argyris element (ARG5) is defined by
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Figure 3.13: Illustration of the zeroth, first, second and third degree discontinuous Lagrange elements
on triangles and tetrahedra. The degrees of freedom may be chosen arbitrarily as long as they span
the dual space V′. Here, the degrees of freedom have been chosen to be identical to those of the
standard Lagrange finite element, with the difference that the degrees of freedom are viewed as
internal to the element.

Figure 3.14: All degrees of
freedom of a discontinuous
Lagrange finite element are
internal to the element, which
means that no global continuity
is imposed by these elements.
This is illustrated here for
discontinuous quadratic
Lagrange elements.

T = triangle, (3.62)

V = P5(T), (3.63)

L =

⎧
⎪⎪⎨

⎪⎪⎩

v(xi), for each vertex xi,
grad v(xi)j, for each vertex xi, and each component j,
D2v(xi)jk, for each vertex xi, and each component jk, j � k,
grad v(mi) · n, for each edge midpoint mi.

(3.64)

The dimension of ARG5 is

n = 21. (3.65)

Letting ΠT denote the interpolation operator defined by the degrees of freedom above, the interpola-
tion properties of the (quintic) Argyris elements are (Braess, 2007, Chapter II.6):
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Figure 3.15: The quintic Argyris
triangle. The degrees of
freedom are point evaluation,
point evaluation of both first
derivatives and point
evaluation of all three second
derivatives at the vertices of the
triangle, and evaluation of the
normal derivative at the
midpoint of each edge.

||u−ΠTu||H2(T) � C h4
T |u|H6(T), ||u−ΠTu||H1(T) � C h5

T|u|H6(T), ||u−ΠTu||L2(T) � C h6
T|u|H6(T).

(3.66)

The normal derivatives in the dual basis for the Argyris element prevent it from being affine-
interpolation equivalent. This prevents the nodal basis from being constructed on a reference cell
and affinely mapped. Recent work by Domínguez and Sayas (2008) develops a transformation that
corrects this issue and requires less computational effort than directly forming the basis on each cell
in a mesh. The Argyris element can be generalized to polynomial degrees higher than quintic, still
giving C1 continuity with C2 continuity at the vertices (Šolín et al., 2004).

3.7.2 The Hermite element

The Hermite element generalizes the classic cubic Hermite interpolating polynomials on the line
segment (Ciarlet, 2002). Hermite-type elements appear in the finite element literature almost from
the beginning, appearing at least as early as the classic paper by Ciarlet and Raviart (1972). They have
long been known as useful C1-nonconforming elements (Braess, 2007; Ciarlet, 2002). Under affine
mappings, the Hermite elements form affine-interpolation equivalent families (Brenner and Scott, 2008).

On the triangle, the space of cubic polynomials is ten-dimensional, and the ten degrees of freedom
for the Hermite element are point evaluation at the triangle vertices and barycenter, together with the
components of the gradient evaluated at the vertices. The generalization to tetrahedra is analogous.

Definition 3.13 (Hermite element) The (cubic) Hermite element (HER) is defined by

T ∈ {interval, triangle, tetrahedron}, (3.67)

V = P3(T), (3.68)

L =

⎧
⎨

⎩

v(xi), for each vertex xi,
grad v(xi)j, for each vertex xi, and each component j,
v(b), for the barycenter b (of the faces in 3D).

(3.69)

The dimension of HER is

n =

{
10, T triangle,
20, T tetrahedron.

(3.70)

Letting ΠT denote the interpolation operator defined by the degrees of freedom above, the inter-
polation properties of the (cubic) Hermite elements are:

||u − ΠTu||H1(T) � C h3
T |u|H4(T), ||u − ΠTu||L2(T) � C h4

T|u|H4(T). (3.71)
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Figure 3.16: The cubic Hermite
triangle and tetrahedron. The
degrees of freedom are point
evaluation at the vertices and
the barycenter, and evaluation
of both first derivatives at the
vertices.

Unlike the cubic Hermite functions on a line segment, the cubic Hermite triangle and tetrahedron
cannot be patched together in a fully C1 fashion. The cubic Hermite element can be extended to
higher degree (Brenner and Scott, 2008).

3.7.3 The Morley element

The Morley triangle defined in Morley (1968) is a simple H2-nonconforming quadratic element that
is used in fourth-degree problems. The function space V is simply P2(T), the six-dimensional space
of quadratics. The degrees of freedom consist of pointwise evaluation at each vertex and the normal
derivative at each edge midpoint. It is interesting to note that the Morley triangle is neither C1 nor
even C0, yet it is suitable for fourth-order problems, and is the simplest known element for this
purpose.

The Morley element was first introduced to the engineering literature by Morley (1968, 1971). In
the mathematical literature, Lascaux and Lesaint (1975) considered it in the context of the patch test
in a study of plate-bending elements. Recent applications of the Morley element include Huang et al.
(2008); Ming and Xu (2006).

Definition 3.14 (Morley element) The (quadratic) Morley element (MOR) is defined by

T = triangle, (3.72)

V = P2(T), (3.73)

L =

{
v(xi), for each vertex xi,
grad v(mi) · n, for each edge midpoint mi.

(3.74)

The dimension of the Morley element is
n = 6. (3.75)

Letting ΠT denote the interpolation operator defined by the degrees of freedom above, the inter-
polation properties of the (quadratic) Morley elements are:

||u − ΠTu||H1(T) � C h2
T |u|H3(T), ||u − ΠTu||L2(T) � C h3

T|u|H3(T). (3.76)

3.8 Enriching finite elements

If U, V are linear spaces, one can define a new linear space W by

W = {w = u + v : u ∈ U, v ∈ V}. (3.77)

Here, we choose to call such a space W an enriched space.
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Figure 3.17: The quadratic
Morley triangle. The degrees of
freedom are point evaluation at
the vertices and evaluation of
the normal derivative at the
midpoint on each edge.

The enrichment of a finite element space can lead to improved stability properties, especially
for mixed finite element methods. Examples include the enrichment of the Lagrange element with
bubble functions for use with the Stokes equations or enriching the Raviart–Thomas element for
linear elasticity (Arnold et al., 1984a,b). Bubble functions have since been used for many different
applications. We here define a bubble element for easy reference. Notable examples of the use of a
bubble element include:

The MINI element for the Stokes equations. In the lowest degree case, the linear vector Lagrange ele-
ment is enriched with the cubic vector bubble element for the velocity approximation (Arnold et al.,
1984b).

The PEERS element for weakly symmetric linear elasticity. Each row of the stress tensor is approximated
by the lowest degree Raviart–Thomas element enriched by the curl of the cubic bubble element
(Arnold et al., 1984a).

Definition 3.15 (Bubble element) The bubble element (Bq) is defined for q � (d + 1) by

T ∈ {interval, triangle, tetrahedron}, (3.78)

V = {v ∈ Pq(T) : v|∂T = 0}, (3.79)

�i(v) = v(xi), i = 1, . . . , n(q). (3.80)

where {xi}n(q)
i=1 is an enumeration of the points3 in T defined by

x =

⎧
⎨

⎩

(i + 1)/q, 0 � i � q − 2, T interval,
((i + 1)/q, (j + 1)/q), 0 � i + j � q − 3, T triangle,
((i + 1)/q, (j + 1)/q, (k + 1)/q), 0 � i + j + k � q − 4, T tetrahedron.

(3.81)

The dimension of the Bubble element is

n(q) =

⎧
⎨

⎩

q − 1, T interval,
1
2 (q − 2)(q − 1), T triangle,
1
6 (q − 3)(q − 2)(q − 1), T tetrahedron.

(3.82)

3Any other basis for the dual space of V will work just as well.
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PqΛk P−
q Λk

k d = 1 d = 2 d = 3

0 CGq CGq CGq

1 DGq NED2,curl
q NED2,curl

q
2 — DGq BDMq
3 — — DGq

k d = 1 d = 2 d = 3

0 CGq CGq CGq

1 DGq−1 NED1,curl
q NED1,curl

q
2 — DGq−1 RTq
3 — — DGq−1

Table 3.2: Relationships between the finite elements PqΛk and P−
q Λk defined by finite element ex-

terior calculus and their more traditional counterparts using the numbering and labeling of this
chapter.

3.9 Finite element exterior calculus

It has recently been demonstrated that many of the finite elements that have been discovered or
invented over the years can be formulated and analyzed in a common unifying framework as spe-
cial cases of a more general class of finite elements. This new framework is known as finite element
exterior calculus and is summarized in Arnold et al. (2006a). In finite element exterior calculus, two
finite element spaces PqΛk(T) and P−

q Λk(T) are defined for general simplices T of dimension d � 1.
The element PqΛk(T) is the space of polynomial differential k-forms4 on T with degrees of freedom
chosen to ensure continuity of the trace on facets. When these elements are interpreted as regular
elements, by a suitable identification between differential k-forms and scalar- or vector-valued func-
tions, one obtains a series of well-known elements for 0 � k � d � 3. In Table 3.2, we summarize the
relation between these elements and the elements presented above in this chapter5.

3.10 Summary

In the table below, we summarize the list of elements discussed in this chapter. For brevity, we
include element degrees only up to and including q = 3. For higher degree elements, we refer to
the script dolfin-plot available as part of FEniCS, which can be used to easily plot the degrees of
freedom for a wide range of elements:

Bash code
$ dolfin-plot BDM tetrahedron 3

$ dolfin-plot N1curl triangle 4

$ dolfin-plot CG tetrahedron 5

4A differential k-form ω on a domain Ω maps each point x ∈ Ω to an alternating k-form ωx on the tangent space Tx(Ω) of
Ω at the point x. One can show that for d = 3, the differential k-forms correspond to scalar-, vector-, vector-, and scalar-valued
functions for k = 0, 1, 2, 3 respectively. Thus, we may identify for example both PqΛ1 and PqΛ2 on a tetrahedron with the
vector-valued polynomials of degree at most q on the tetrahedron.

5The finite elements PqΛk(T) and P−
q Λk(T) have been implemented for general values of k, q and d = 1, 2, 3, 4, . . . as part

of the FEniCS Exterior package available from http://launchpad.net/exterior.

http://launchpad.net/exterior
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Elements indicated with at (∗) in the table below are fully supported by FEniCS.

Element family Notation Illustration Dimension Description

(Quintic) Argyris ARG5 (2D) n = 21

P5 (scalar); 3 point values,
3 × 2 derivatives, 3 × 3 sec-
ond derivatives, 3 direc-
tional derivatives

Arnold–Winther AW (2D) n = 24

P3(T; S) (matrix) with linear
divergence; 3 × 3 point val-
ues, 12 normal components,
3 interior moments

Brezzi–Douglas–Marini (∗) BDM1 (2D) n = 6 [P1]
2 (vector); 6 normal com-

ponents

Brezzi–Douglas–Marini (∗) BDM2 (2D) n = 12 [P2]
2 (vector); 9 normal com-

ponents, 3 interior moments

Brezzi–Douglas–Marini (∗) BDM3 (2D) n = 20
[P3]

2 (vector); 12 normal
components, 8 interior mo-
ments

Brezzi–Douglas–Marini (∗) BDM1 (3D) n = 12 [P1]
3 (vector); 12 normal

components

Brezzi–Douglas–Marini (∗) BDM2 (3D) n = 30
[P2]

3 (vector); 24 normal
components, 6 interior mo-
ments

Brezzi–Douglas–Marini (∗) BDM3 (3D) n = 60
[P3]

3 (vector); 40 normal
components, 20 interior mo-
ments

Crouzeix–Raviart (∗) CR1 (2D) n = 3 P1 (scalar); 3 point values
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Crouzeix–Raviart (∗) CR1 (3D) n = 4 P1 (scalar); 4 point values

Discontinuous Lagrange (∗) DG0 (2D) n = 1 P0 (scalar); 1 point value

Discontinuous Lagrange (∗) DG1 (2D) n = 3 P1 (scalar); 3 point values

Discontinuous Lagrange (∗) DG2 (2D) n = 6 P2 (scalar); 6 point values

Discontinuous Lagrange (∗) DG3 (2D) n = 10 P3 (scalar); 10 point values

Discontinuous Lagrange (∗) DG0 (3D) n = 1 P0 (scalar); 1 point value

Discontinuous Lagrange (∗) DG1 (3D) n = 4 P1 (scalar); 4 point values

Discontinuous Lagrange (∗) DG2 (3D) n = 10 P2 (scalar); 10 point values

Discontinuous Lagrange (∗) DG3 (3D) n = 20 P3 (scalar); 20 point values
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(Cubic) Hermite HER (2D) n = 10 P3 (scalar); 4 point values,
3 × 2 derivatives

(Cubic) Hermite HER (3D) n = 20 P3 (scalar); 8 point values,
4 × 3 derivatives

Lagrange (∗) CG1 (2D) n = 3 P1 (scalar); 3 point values

Lagrange (∗) CG2 (2D) n = 6 P2 (scalar); 6 point values

Lagrange (∗) CG3 (2D) n = 10 P3 (scalar); 10 point values

Lagrange (∗) CG1 (3D) n = 4 P1 (scalar); 4 point values

Lagrange (∗) CG2 (3D) n = 10 P2 (scalar); 10 point values

Lagrange (∗) CG3 (3D) n = 20 P2 (scalar); 20 point values

Mardal–Tai–Winther MTW (2D) n = 9

[P2]
2 (vector); with con-

stant divergence and lin-
ear normal components; 6
moments of normal compo-
nents, 3 moments of tangen-
tial components
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(Quadratic) Morley MOR (2D) n = 6 P2 (scalar); 3 point values, 3
directional derivatives

Nédélec 1st kind H(curl) (∗) NED1
1 (2D) n = 3 [P0]

2 + S1 (vector); 3 tangen-
tial components

Nédélec 1st kind H(curl) (∗) NED1
2 (2D) n = 8

[P1]
2 + S2 (vector); 6 tangen-

tial components, 2 interior
moments

Nédélec 1st kind H(curl) (∗) NED1
3 (2D) n = 15

[P2]
2 + S3 (vector); 9 tangen-

tial components, 6 interior
moments

Nédélec 1st kind H(curl) (∗) NED1
1 (3D) n = 6 [P0]

3 + S1 (vector); 6 tangen-
tial components

Nédélec 1st kind H(curl) (∗) NED1
2 (3D) n = 20 [P1]

3 + S2 (vector); 20 tan-
gential components

Nédélec 1st kind H(curl) (∗) NED1
3 (3D) n = 45

[P2]
3 + S3 (vector); 42 tan-

gential components, 3 inte-
rior moments

Nédélec 2nd kind H(curl)
(∗)

NED2
1 (2D) n = 6 [P1]

2 (vector); 6 tangential
components

Nédélec 2nd kind H(curl)
(∗)

NED2
2 (2D) n = 12

[P2]
2 (vector); 9 tangential

components, 3 interior mo-
ments
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Nédélec 2nd kind H(curl)
(∗)

NED2
3 (2D) n = 20

[P3]
2 (vector); 12 tangential

components, 8 interior mo-
ments

Nédélec 2nd kind H(curl)
(∗)

NED2
1 (3D) n = 12 [P1]

3 (vector); 12 tangential
components

Raviart–Thomas (∗) RT1 (2D) n = 3 [P0]
2 + xP0 (vector); 3 nor-

mal components

Raviart–Thomas (∗) RT2 (2D) n = 8
[P1]

2 + xP1 (vector); 6 nor-
mal components, 2 interior
moments

Raviart–Thomas (∗) RT3 (2D) n = 15
[P2]

2 + xP2 (vector); 9 nor-
mal components, 6 interior
moments

Raviart–Thomas (∗) RT1 (3D) n = 4 [P0]
3 + xP0 (vector); 4 nor-

mal components

Raviart–Thomas (∗) RT2 (3D) n = 15
[P1]

3 + xP1 (vector); 12 nor-
mal components, 3 interior
moments

Raviart–Thomas (∗) RT3 (3D) n = 36
[P2]

3 + xP2 (vector); 24 nor-
mal components, 12 interior
moments


	3 Common and unusual finite elements
	3.1 The finite element definition
	3.2 Notation
	3.3 H1 finite elements
	3.3.1 The Lagrange element
	3.3.2 The Crouzeix–Raviart element

	3.4 H(div) finite elements
	3.4.1 The Raviart–Thomas element
	3.4.2 The Brezzi–Douglas–Marini element
	3.4.3 The Mardal-Tai-Winther element
	3.4.4 The Arnold–Winther element

	3.5 H(curl) finite elements
	3.5.1 The Nédélec H(curl) element of the first kind
	3.5.2 The H(curl) Nédélec element of the second kind

	3.6 L2 finite elements
	3.6.1 Discontinuous Lagrange

	3.7 H2 finite elements
	3.7.1 The Argyris element
	3.7.2 The Hermite element
	3.7.3 The Morley element

	3.8 Enriching finite elements
	3.9 Finite element exterior calculus
	3.10 Summary


