<div dir="ltr"><div class="gmail_extra"><div class="gmail_quote">On Mon, Dec 2, 2013 at 4:02 PM, Geoffrey Irving <span dir="ltr"><<a href="mailto:irving@naml.us" target="_blank">irving@naml.us</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
For simulations of bending shells, I'm going to need access to second<br>
derivatives of both primal and dual basis functions.  This means<br>
versions of f0,f1 that take second derivatives, plus f2 for inner<br>
products with the dual second derivatives.<br>
<br>
Have you thought about how to fit this into the current code without<br>
interfering with speed when the second derivatives aren't required?<br>
It also increases the relevance of Jed's note that material models and<br>
material field evaluations might ideally be shared across evaluations<br>
at the same quadrature point.  I.e., merging f1 and f2 into a single<br>
call might avoid redundancy.<br>
<br>
I haven't used actual shell elements before (all the bending<br>
simulations I've done used ad-hoc hinge forces), so any advice about<br>
element choice would be great.  Are the default quadratic elements a<br>
good choice?<br></blockquote><div><br></div><div>So these elements are C1? I would have a tendency to fall back on mixed</div><div>formulations or interior penalty (I don't understand these) formulations for</div><div>
this. Then C0 elements are alright.</div><div><br></div><div>Jed, have you used any of these?</div><div><br></div><div>   Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">

Thanks,<br>
Geoffrey<br>
</blockquote></div><br><br clear="all"><div><br></div>-- <br>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>
-- Norbert Wiener
</div></div>