PETSc finite element details

Geoffrey Irving
Otherlab

November 17, 2013

1 Weak form PDEs

Consider a strong form PDE with fields u_{0}, u_{1}, \ldots, each of which has components $u_{i 0}, u_{i 1}, \ldots$, and equations

$$
f_{a b}\left(u_{i j}, \partial_{k} u_{i j}, \partial_{k} \partial_{l} u_{i j}\right)=0
$$

where we have one $f_{i j}$ for each $u_{i j}$. We use the convention that an index occurring only inside a function call means that all values of the index are passed to the function. When we later discretize over space, u_{i} and u_{j} will be allowed to live in different discrete function spaces, while $u_{i j}$ and $u_{i k}$ come the same function space.

We pass to the weak form by integrating a smooth test function $v_{a b}$ against $f_{a b}$, then integrating by parts to get

$$
\begin{aligned}
\int_{\Omega} v_{a b} f_{a b}\left(u_{i j}, \partial_{k} u_{i j}, \partial_{k} \partial_{l} u_{i j}\right) d x & =0 \\
\int_{\Omega} v_{a b} f_{a b}^{0}\left(u_{i j}, \partial_{k} u_{i j}\right) d x+\int_{\Omega} \partial_{c} v_{a b} f_{a b c}^{1}\left(u_{i j}, \partial_{k} u_{i j}\right) d x & =0
\end{aligned}
$$

where f^{0} and f^{1} depend on u only to first derivatives. The pointwise functions f^{0} and f^{1} are exposed to petsc, with $u_{i j}$ passed as an (i, j)-major array and $\partial_{k} u_{i j}$ as an (i, j, k)-major array. $f_{a b}^{0}$ is split into functions f_{a}^{0} each returning a b-major array, and $f_{a b c}^{1}$ is split into functions f_{a}^{1} each returning a (b, c)-major array. In weird pseudocode signatures,

```
#define AUX a[i,j], da[i,j]/dx[k], x[k]
f0[a] : (u[i,j], du[i,j]/dx[k], AUX) -> [b];
f1[a] : (u[i,j], du[i,j]/dx[k], AUX) -> [b,c];
```

where x_{k} is position and $a_{i j}$ are auxiliary fields.

2 Boundary conditions

With boundary conditions, the weak form of the PDE becomes

$$
\int_{\Omega} v_{a b} f_{a b}^{0} d x+\int_{\Omega} \partial_{c} v_{a b} f_{a b c}^{1} d x+\int_{\delta \Omega} v_{a b} f_{a b}^{0 \partial} d a+\int_{\delta \Omega} \partial_{c} v_{a b} f_{a b c}^{1 \partial} d a=0
$$

where the boundary condition terms $f^{0 \partial}$ and $f^{1 \partial}$ additionally depend on outward pointing boundary normals n_{k}. The pseudocode signatures are the same as for f^{0} and f^{1} except for the dependence on normals:

```
f0b[a] : (..., n[k]) -> [b]
f1b[a] : (..., n[k]) -> [b,c]
```


3 Jacobians

The above is sufficient for computing residuals. For residual Jacobians, we additionally need first derivatives of f^{0} and f^{1} w.r.t. u and ∇u, for a total of four additional functions $g^{0}, g^{1}, g^{2}, g^{3}$. Theoretically we might also need derivatives of the boundary terms, but this is currently unsupported.

We split the 4 -valued indexed g^{γ} into $g^{\alpha \beta}$ where $\gamma=2 \alpha+\beta . g^{\alpha \beta}$ represents the Jacobian of f^{α} w.r.t. the β th derivatives of u :

$$
\begin{aligned}
g_{a i b j}^{00} & =\frac{d}{d u_{i j}} f_{a b}^{0} \\
g_{a i b j k}^{01} & =\frac{d}{d \partial_{k} u_{i j}} f_{a b}^{0} \\
g_{a i b c j}^{10} & =\frac{d}{d u_{i j}} f_{a b c}^{1} \\
g_{a i b c j k}^{11} & =\frac{d}{d \partial_{k} u_{i j}} f_{a b c}^{1}
\end{aligned}
$$

Each $g^{\alpha \beta}$ is split into a two dimensional array of functions $g_{a i}^{\alpha \beta}$ giving function f_{a}^{α} differentiated against the β th derivatives of u_{i}. In signatures:

$$
\begin{array}{lll}
g^{\wedge}\{00\}[a, i] & :(\ldots) & (\ldots)[b j] ; \\
g^{\wedge}\{01\}[a, i] & :(\ldots)->[b j k] ; \\
g^{\wedge}\{10\}[a, i] & :(\ldots)->[b c j] ; \\
g^{\wedge}\{11\}[a, i] & :(\ldots) \rightarrow[b c j k] ;
\end{array}
$$

