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1 Introduction

Scientific computation is a discipline that combines numerical analysis, phys-
ical understanding, algorithm development, and structured programming.
Several yottacycles per year on the world’s largest computers are spent sim-
ulating problems as diverse as weather prediction, the properties of material
composites, the behavior of biomolecules in solution, and the quantum na-
ture of chemical compounds [24]. This article is intended to review specfic
languages features and their use in computational science. We will review
the strengths and weaknesses of different programming styles, with examples
taken from widely used scientific codes.

This article will not cover the broader range of programming languages,
including functional and logic languages, as these have, so far, not made in-
roads into the scientific computing community. We do not cover systems with
sophisticated runtime requirements, such as Cilk [11], since this is currently
incompatible with high performance on cutting edge hardware. For this rea-
son, we also ignore transactional memory, both software and hardware. We
also will not discuss the particular capabilities of software libraries in detail.
Particular libraries will be used as examples, in order to highlight advan-
tages and disadvantages of the programming paradigm, but no exhaustive
presentations of their capabilities, strengths, or weakenesses will be given.
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2 Brief Overview of Language Characteris-

tics

We begin our discussion with imperative languages, like C and Fortran, mean-
ing languages where the programmer explicitly tells the computer what to do
at each step. The computation is built from variables, which hold values, and
functions which compute the value of a variable based upon the input values
of other varaiables. For instance, important functions for scientific comput-
ing are arithmetic functions, like division, and linear algebraic functions, like
matrix multiplication. The principle advantage of these imperative languages
over simpler systems, such as Excel, is the ability to flexibly combine these
basic elements.

In C and Fortran 90, groups of related variables can be combined to-
gether in a structure, which allows them to be passed as a unit to functions.
This both improves code readibility and decreases its conceptual complexity.
For example, a customer structure could store a customer’s name, account
number, and outstanding balance.

struct customer {
char ∗name ;
int acct ;
f loat balance ;

} ;

Similarly, functions may call other functions, or themselves recursively, in
order to simplify the description of the operation. For example, merge sort
algorithm works by first sorting each half of an array, and then merging
together these smaller sorted arrays into a completely sorted array.

void mergeSort ( int array [ ] , int arrayLength ) {
int hal fLength = arrayLength /2 ;

i f ( arrayLength < 2) return ;
mergeSort(&array [ 0 ] , ha l fLength ) ;
mergeSort(&array [ ha l fLength ] , ha l fLength ) ;
merge(&array [ 0 ] , &array [ ha l fLength ] ) ;

}

Using these mechanisms, just amounting to the introduction of hierarchical
organization to simple code elements, the complexity of large codes can be
drastically reduced.
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Object-Oriented languages, such as C++ and Python, allow a further
level of combination. Data can be grouped together with the functions which
operate on it, into a super-structure called an object. This can be useful for
organizing the action on groups of data. For example, we can augment our
customer example with methods which change the account number or debit
the account, where now we declare a class which describes a type of object.

class customer {
char ∗name ;
int acct ;
f loat balance ;

public :
void deb i t ( f loat amount ) {

this−>balance += amount ;
} ;
void changeAccount ( int acct ) {

this−>acct = acct ;
} ;

}

However, this organization can also be accomplished in standard C by passing
the structure as an argument.

void deb i t ( struct customer ∗ th i s , f loat amount ) {
th i s−>balance += amount ;

}

Another organizational strategy is to give types to variables. In C and
Fortran, this tells the compiler how much space to use for a variable, such
as 4 bytes for a long int in C. Structures are also types, built out of smaller
types, as are classes. In some languages, such as C, C++, and Fortran, the
type of every variable must be specified before the program is run, which is
called static typing. In contrast, Python, Ruby, and Perl allow the type of a
variable to change at runtime depending on what kind of value is stored in
it, which is called dynamic typing. Dynamic typing makes code smaller and
easier to write, but the code is harder for the compiler to optimize and can
sometimes be harder to understand without types to guide the reader.

Object-oriented languages very often have collections of similar functions
that operate differently depending on the type of argument provided, or the
type of object associated with the function since the object is understood as
a silent first argument. For example,
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class c i r c l e {
f loat rad iu s ;

public :
f loat area ( ) {

return PI∗ this−>rad iu s ∗ this−>rad iu s ;
} ;

}

class t r i a n g l e {
f loat base , he ight ;

public :
f loat area ( ) {

return 0 .5∗ this−>base ∗ this−>he ight ;
} ;

}

the area() function will behave differently when called with a circle object,
rather than a triangle. Choosing a specific function, or method dispatch,
based upon the types of its arguments is called polymorphism. A programmer
might want two classes to share many functions and data, but differ in a few
respects. The inheritance mechanism allows one class to behave exactly as
another, unless that behvior is explicitly redefined.

In languages with static typing, it can be useful to write functions which
have the same form for a range of types, just as they would look in a dynam-
ically typed language. This mechanism is called genericity, and the specific
strategy used in C++ is templating. Templates allow a placeholder, often T,
to be replaced by the specific type of an argument when the code is compiled.
Thus many versions of the function are generated, a process called template
instantiation, one for each different type of argument.

3 Single language Codes

3.1 Imperative Programming

Advantages The still dominant paradigm for both application code and
libraries in scientific computing is a single language code base in a well-
established imperative language such as C or FORTRAN 77 (F77). These
languages have several notable advantages over more sophisticated alterna-
tives when applied to numerical algorithms. First and foremost, they can be
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made performant by a mildly proficient user, and the ease of achieving good
performance comes from several language features. Both C and Fortran are
very similar to the underlying assembly code into which they are compiled.
Thus, it is not only obvious to users how a given routine will be executed,
but also obvious to the compiler. This correspondence makes it much easier
to create routines that compilers can optimize well. The simple execution
model for C and F77 also makes inspection of the code by an outside user
possible. More complex constructs, such as templates and deep inheritance
hierarchies, can obscure the actual execution even while making the intent
clearer. Moreover, the state of the computation and data structures can be
easily seen in a debugger, whereas more complex constructs and execution
environments often hide this information.

Simplicity in execution also translates to greater ease in using debugging
and profiling tools. Major debugging tools such as gdb, idb, totalview, and
valgrind [21] have excellent support for C and F77. They do support higher
level features, but there can be inconsistencies, especially with template in-
stantiation, that cause some information to be unavailable. This caveat also
applies to profiling tools. Simplicity in binary interface definition means that
C and F77 are especially easy to interface with other languages and environ-
ments. Symbols are not mangled, or made unique using complex names, so
matching ones can be easily created in another system. Function parameter
passing is also unambiguous. This makes C the language of choice when
defining a foreign function interface for a higher level language, that is an
interface which allows functions in one language to be called from another
such as C.

Disadvantages A price is paid, however, for the simplicity of these lan-
guages. The size of source code for equivalent tasks is quite often more than
an order of magnitude larger than for object oriented or functional languages.
The user must write code for method dispatch instead of using polymor-
phism, write separate routines for many types instead of using templates,
produce basic data structures which are not part of core libraries, and in
general reproduce many of the mechanisms built into higher level languages,
as described below.

One of the most severe omissions in C and F77 is that of flexible names-
paces for identifiers, types, and functions. The absence of hierarchical names-
paces for symbols, such as namespace in C++ or dot notation in Python,
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results in comically long identifier names, and rampant problems with clash-
ing symbol names when linking together different scientific libraries. A sec-
ond problem is the need for manual memory management of all structures,
or for F77 static declaration of memory up front. In C++, when objects
are declared in an inner scope such as a function body or for loop, they are
automatically created upon entry and destroyed on exit from that scope.
These are called automatic objects, and arrays can also be defined this way.
In C, the creation and destruction must be managed by hand, which may
be complicated when for instance error conditions arise. Lastly, there are
no language facilities for introspection, determination of code structure at
runtime, as there are in C++ or Python. At best, we can use the dynamic
loading infrastructure to search for library symbols, but cannot determine
which types, functions, or structures are defined in a library without making
separate, configuration tests outside the language itself. This usually results
in fantastic complication of the build process.

Example Perhaps the most successful software library written in this paradigm
are the BLAS library [30], dating from 1979, and LAPACK [5] libraries for
linear algebra, first released in February 1992, for linear algebra. They are
both numerically robust and extremely efficient, and used in almost every
serious numerical package. The internals are so easily understood, being
written in simple F77, that they are often copied wholesale into applica-
tion code without the use of the library itself. However, they suffer from a
classic problem with scientific software of this type, lack of data encapsula-
tion. The data structures upon which the operations, such as matrix-matrix
multiplication, operate are specified directly in the library API. Thus the
layout of dense matrices is given in the interface and cannot be changed by
the implementation. For example, the calling sequence for double precision
matrix-matrix multiplication in BLAS, a workhorse of scientific computing,
is

SUBROUTINE DGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA,
B, LDB, BETA, C, LDC)

∗ . . S ca l a r Arguments . .
DOUBLE PRECISION ALPHA,BETA
INTEGER K,LDA,LDB,LDC,M,N
CHARACTER TRANSA,TRANSB

∗ . .
∗ . . Array Arguments . .
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DOUBLE PRECISION A(LDA, ∗ ) ,B(LDB, ∗ ) ,C(LDC, ∗ )

Here the multiply is prescribed to operate on a dense array of doubles A with
a row stride of LDA. This limitation complicated the implementation of an
efficient distributed memory version of the library, and led to the introduction
of Elemental [39] which uses a more favorable data distribution, especially for
smaller sizes. It has also prevented the fusion of successive operations, which
could result in data reuse or latency hiding, greatly improving the efficiency
of the library.

3.2 Object Orientation

Advantages Object Orientation (OO) is a powerful strategy for data en-
capsulation. Objects are structures that combine data and functions which
operate on that data. Although this can clearly be accomplished in C using
structs and function pointers, many languages have builtin support for this,
including Objective C, C++, C#, and Python. This kind of encapsulation
encourages the programmer to produce data structure neutral interfaces [46],
as opposed to those in LAPACK. Combined with polymorphism, or function
dispatch based upon the argument types, we can write a single numerical
code that uses different algorithms and data structures based upon its input
types [44]. This, in a nutshell, is the current strategy for dealing with the
panoply of modern architectures and problem characteristics for scientific
simulation. It should also be noted that all the OO languages mentioned
above provide excellent namespacing facilities, overcoming another obstacle
noted in Section 3.1.

The essential features of OO organization, encapsulation and dynamic
dispatch, can be emulated in C at the cost of many more lines of code. Early
C++ compilers did just this by emitting C rather than object code. More-
over, languages such as C++ and Java have removed some of the dynamism
present in Objective C and C OO frameworks. We will show an example of
this below.

Disadvantages The downsides of object oriented organization have to do
with controlling code complexity, the original motivation for the introduction
of OO structures. The true measure of code complexity is ease of understand-
ing for an outside observer. There can be a temptation to create deep object
hierarchies, but this tends to work against both code readability and runtime
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flexibility as illustrated below. For numerical code especially, it is common
to introduce operator overloading. This can improve readability, however
transparency of the performance cost is lost, which often results in very slow
application code, unacceptable in most simulation environments.

Examples PETSc [6, 7] and Trilinos [19, 20] are two popular packages
which can solve sparse systems of nonlinear algebraic equations in paral-
lel. A common case for which these libraries use OO techniques to control
complexity is the choice among a dizzying range of iterative solvers and pre-
conditioners.

In PETSc, a Krylov Subspace solver (KSP) object acts as an abstract
base class in C++. However, the key difference is that instantiation of the
subtype is done at runtime,

MPIComm comm;
KSP ksp ;
PC pc ;

KSPCreate (comm, &ksp ) ;
KSPGetPC( ksp , &pc ) ;
/∗ Genera l l y done wi th command l i n e op t i ons ∗/
KSPSetType ( ksp , "gmres" ) ;
PCSetType ( ksp , "ilu" ) ;

and we see that the Trilinos equivalent in C++ is almost identical.

Teuchos : :RCP<Epetra RowMatrix> A;
Epetra Vector LHS, RHS;
Epetra LinearProblem Problem(&∗A,&LHS,&RHS) ;
I fpack Factory ;
Teuchos : :RCP<I f pack Precond i t i one r> Prec =

Teuchos : : rcp ( Factory . Create ("ILU" , &∗A, 1 ) ) ;
AztecOO So lve r ( Problem ) ;

So lve r . SetAztecOption ( AZ solver , AZ gmres ) ;
So lve r . SetPrecOperator (&∗Prec ) ;

Trilinos and PETSc make the same decision to trade language support for
runtime flexibility. In packages like dealII and FEniCS, each linear solver is
instantiated as a separate type which all derive from an abstract base type.
Naively, this strategy would force the user to change the application code
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in order to try a different solver. The Factory Pattern [15] is often used
to alleviate this difficulty. Both Trilinos and PETSc also use factories to
organize instantiation.

However, two related problems arise. First, if the solver object is defined
by a single concrete type, changing a given solver nested deeply within a
hierarchical solve becomes prohibitively complex. Both solver objects above
can change the concrete type “on the fly”. This ability is key in multiphysics
simulations where already complex solvers are combined and nested. Second,
accessing the concrete solver type would now involve downcasts that may fail,
littering the code with obtrusive checks. In PETSc, each concrete type has
an API which is ignored by other types. Thus,

KSPGMRESSetRestart ( ksp , 4 5 ) ;
KSPChebychevSetEigenvalues ( ksp , 0 . 9 , 0 . 1 ) ;
PCFactorSetLevels ( pc , 1 ) ;
PCASMSetOverlap ( pc , 2 ) ;

will execute without error regardless of the solver type, but will set eigenvalue
bounds if the user selected the Chebychev method. Trilinos uses a bag of
parameters,

Teuchos : : ParameterList L i s t ;

L i s t . s e t ("fact: drop tolerance" , 1e−9);
L i s t . s e t ("fact: level-of-fill" , 1 ) ;
L i s t . s e t ("schwarz: combine mode" , "Add" ) ;
Prec−>SetParameters ( L i s t ) ;

however this sacrifices type safety for the arguments, and can also result in
aliasing of argument names.

3.3 Code Generation

Advantages Performance has always been a primary concern for numerical
codes. However, the advent of new, massively parallel architectures, such as
the Nvidia Fermi [36] or Intel MIC [33], while providing much more energy
efficient performance, has greatly increased the penalty for suboptimal code.
These chips have vector units accomodating from 4 to 16 double precision
operations, meaning that code without vectorization will achieve no more
than 25% of peak performance, and usually much less. They also increase
the imbalance between flop rate and memory bandwidth or latency, so that
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thousands of flops can be needed to cover outstanding memory references.
GPUs in particular have very high memory latency coupled with a wide
bus, making the memory access pattern critical for good performance. In
addition, the size of fast cache memory per core has shrunk dramatically, so
that it cannot easily be used to hide irregular memory access.

The strategies for mitigating these problems are familiar, and include
tiling [3, 18], redundant computation, and reordering for spatial and tem-
poral memory locality [16, 48]. The CUDA language incorporates two of
the most important optimizations directly into the language: vectorization
and memory latency hiding through fast context switch [36]. In CUDA, one
writes kernels in a Single Instrution Multiple Thread (SIMT) style, so that
vector operations are simple and explicit, in contrast to the complicated and
non-portable compiler intrinsics for the Intel MIC. These kernel routines may
be swapped onto a processor using an extremely fast context switch, allow-
ing memory latency in one kernel to be hidden by computation in others.
However, in CUDA itself, it is not possible to express dependencies among
kernels. OpenCL [17] has preserved these essential features of CUDA, and
also achieves excellent performance on modern hardware.

It is, however, unlikely that these kernels can be coded by hand for scien-
tific libraries. Even should the model, discretization, coefficient representa-
tion, and solver algorithm be fixed, the kernel would still have to take account
of the vector length on the target processor, memory bus width, and available
process local memory. We are not describing merely tuning a small number
of parameters describing the architecture, as for instance in Atlas [49], but
algorithm reorganization at a high level, as shown in the examples.

Disadvantages The pricipal disadvantage of automatically generated code
are weak support in the build toolchain. In contrast to C++ templates, more
exotic methods of code generation require outside tools, usually separate files,
and are not easily incorporated into existing build system, especially for
large projects. A very hopeful development, however, is the incorporation in
OpenCL of compilation as a library call. Thus kernel generation, compilation,
and linking can take place entirely within a running application, much like
the template version.

However code is generated, care must be taken that the final output
can be read by the user, and perhaps improved. A major disadvantage of
templates is that it prevents the user from directly inspecting the gener-
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ated code. Without readable code, the user cannot inspect the high level
transformations which have been used, correct simple errors for new environ-
ments, insert specialized code for new problems, and in general understand
the system. Code generators should strive to provide easy access for the
user to generated source, as shown in the FEniCS package, while seamlessly
integrating the result into existing build architectures.

Examples The Thrust [10] package from Nvidia uses the C++ template
mechanism to generate CUDA kernels for common functional operations such
as map, transform, and reduceByKey. Most transformations here amount to
intelligent blocking and tiling, and are well suited to this mechanism. Even
higher level generation is used by both Spiral [40] and FFTW [14]. The
algorithm is broken down into smaller components, for FFTW these are
“codelets” and Spiral produces another low-level language. A particular in-
stantiation of the algorithm can be composed of these pieces in many different
ways. Partial implementations are constructed, run, and timed. This real
time evaluation guides the construction of the final implementation for the
given problem.

3.4 Generiticity and Templating

Advantages By far the most popular type of code generation technique
employed in scientific computing is C++ templates. It gives users the ability
to hardwire constants into a piece of code, allowing the compiler to fold them
and perform loop unrolling optimizations, without sacrificing flexibility in
the code base or using convoluted preprocessing schemes. It is also possible
to write generic operations, independent of the data type on which they
operate, but still have them properly type check. This can make the code
base much smaller, as separate routines for different types are unified, and
is the inspiration behind the Standard Template Library [47, 42]. Moreover,
all this can be done without changing the normal toolchain for C++ use,
including compilation, profiling and debugging.

Disadvantages While templates are integrated into the normal C++ work-
flow, unfortunately the product of template expansion is not available to the
user. Thus, they cannot inspect the particular optimizations which are per-
formed or specialize it by adding code for a specific instance (although they

11



can use the template specialization mechanism). Compile time also greatly
increases with templates, becoming problematic for large code bases. In addi-
tion, the type safety of templates is enforced at the instantiation point which
is can very far removed from the use location in the code. This very often
results in inpenetrable, voluminous error messages that stretch for hundreds
of thousands of lines. The failure of concepts to enter the C++ standard [43]
seems to indicate that this problem will persist far into the future. The
template mechanism makes language interoperability almost impossible. In
general, one must instantiate all templates to be exposed to another language,
and remove templates from public APIs visible in other languages.

The template mechanism, when used to do simple type naming and con-
stant injection, can be quite effective. However, when used for higher level
logical operations and to execute more complicated code rearrangement,
there are numerous problems. The syntax becomes very cumbersome, as
in the case of optional template arguments. The logic of instantiation (type
resolution) is opaque, and following the process during debugging is nearly
impossible. The gains in source code size and readability are lost when using
templates for more sophisticated code transformation.

Examples The Elemental library [39, 38] exhibits two very common uses
of templates for scientific computing. It templates over basic types, but
it also uses template markers to switch between entirely different routines.
They are both present in the basic distributed matrix class, DistMatrix,
with declaration:

enum Di s t r i bu t i on {
MC, // Col o f a matrix d i s t r i b u t i o n
MD, // Diagonal o f a matrix d i s t r i b u t i o n
MR, // Row of a matrix d i s t r i b u t i o n
VC, // Col−major vec t o r d i s t r i b u t i o n
VR, // Row−major vec t o r d i s t r i b u t i o n
STAR // Do not d i s t r i b u t e
} ;
template<typename T, D i s t r i bu t i on ColDist ,

D i s t r i bu t i on RowDist , typename Int>
class DistMatrix ;

The first template argument defines the number field over which the ma-
trix operates. This allows identical source to be used for single precision,
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double precision, quad precision, and complex matrices, since these types all
respond to the arithmetic operations. At a slightly higher level, search and
sort algorithms in the Standard Template Library rely on the same interface
compatibility to write generic algorithms. This can be extended to very high
level algorithms, such as the Conjugate Gradient solver [41] for sparse linear
systems in the dealII package [8, 9].

template <class VECTOR>
template <class MATRIX, class PRECONDITIONER>
void
SolverCG<VECTOR> : : s o l v e ( const MATRIX &A,

VECTOR &x ,
const VECTOR &b ,
const PRECONDITIONER &precond i t i on )

{
i f ( ! x . a l l z e r o ( ) ) {
A. vmult ( g , x ) ;
g . add (−1. ,b ) ;

} else {
g . equ (−1. ,b ) ;

}
r e s = g . l2 norm ( ) ;

conv = this−>c on t r o l ( ) . check (0 , r e s ) ;
i f ( conv ) {return ;}
precond i t i on . vmult (h , g ) ;
d . equ (−1. ,h ) ;
gh = g∗h ;
while ( conv == SolverContro l : : i t e r a t e ) {

i t ++;
A. vmult (Ad, d ) ;
alpha = d∗Ad;
alpha = gh/alpha ;
g . add ( alpha ,Ad ) ;
x . add ( alpha , d ) ;
r e s = g . l2 norm ( ) ;
conv = this−>c on t r o l ( ) . check ( i t , r e s ) ;
i f ( conv != So lverContro l : : i t e r a t e ) break ;
p r e cond i t i on . vmult (h , g ) ;
beta = gh ;
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gh = g∗h ;
beta = gh/beta ;
d . sadd ( beta ,−1. , h ) ;

}
}

This code is shared among all implementations of VECTOR, MATRIX, and
PRECONDITIONER, in much the same way it is in OO codes using an ab-
stract base class, similar to PETSc.

However, in complicated numeric codes, it is often the case that tem-
plate instantiation is substituted for dispatch. For example, the AlignWith()

method has different implementations depending on the type of the template
arguments. This evaluation of method displatch at compile time avoids the
overhead of lookup in a virtual table of function pointers, but it sacrifces
flexibility. With types fixed at compile time, we cannot change types in re-
sponse to different input, or new hardware, or simulation conditions without
recoding and rebuilding the executable. This makes exploration of different
implementations problematic, particularly in the context of solvers. More-
over, more complex block solvers for multiphysics systems [34] are built out
of basic solvers, and runtime type changes allow construction of a range of
powerful solvers [45].

4 Multi-language Codes

4.1 Python and Wrapping

Advantages Multilanguage code allows the designer to combine the strengths
of different approaches to programming. A popular combination in scien-
tific computing is the speed and memory efficiency of languages like C and
Fortran with the flexibility and parsimony of scripting languages such as
Python. Python allows inspection of the full state of the running program,
introspection, and management of both memory and variable typing, speed-
ing development of new code and easing unit testing [29, 35]. Python also
supports generic programming since all variables are dynamically typed and
do not need to be declared when code is written.

Specialized Python tools have been developed for wrapping C libraries,
such as ctypes, SWIG, and Cython. Cython in particular allows C data
structures to be manipulated transparently in Python without copies, Python
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routines to be called from function pointers in C, and data conversions to be
completely automated. The object structure of C++ can even be mapped
to the object structure in Python. Error and exception handling is also
automated. Cython also allows Python routines to be annotated, and then
automatically converted to C and compiled. The numpy library [37] allows
direct manipulation in Python of multi-dimensional arrays, perhaps using
memory allocated in other languages. Operations are performed in compiled
code, sometimes on the fly, and without copies, making it as efficient as
standard C, and it can leverage system-tuned linear algebra libraries.

Python string processing and easy data structure manipulation are very
useful for managing user input and output. Many libraries, such as PyLith [1,
2], use Python as a top level control language and then dispatch to C/C++/Fortran
for the main numerical processing underneath. Using the tools mentioned
above (PyLith uses SWIG), this process can be almost entirely automated.
Moreover, Python’s ability to easily expose a library API, and the use of
numpy arrays for data interchange, make it an excellent tool for combining
libraries at a higher level. Libraries solving different physical problems or
different models of a given problem can be combined to attack more com-
plex multi-model, multi-physics, multi-scale problems [25, 12]. In addition,
this wrapping capability has been used to great effect on GPU hardware,
incorporating CUDA and OpenCL libraries into both desktop and parallel
computations [28, 26, 27].

Disdvantages The central disadvantage for multi-language codes comes
in debugging. There are certainly hurdles introduced into the build system,
since different compilation and links steps are needed and many more tests
are needed to verify interoperability, but these can alrgely be handled by
standard systems. No tool exists today that can inspect the state of a run-
ning program in the style above, for example Python using a C library. Even
the stack trace after an error is routinely unavailable, although it can be
logged by the C library and passed up as is done in petsc4py [13]. However,
stepping across languages boundaries in a debugger is not possible, and this
limitation makes debugging new code extremely difficult. Thus, the strategy
above works best when combining several mature single-language libraries,
so that debugging is focused only on the interactions between libraries, which
can be seen in the state of the numpy objects communicated among them,
rather than on library internals. Recent developments, including the exten-
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sion support for Python in gdb 7, indicate that this situation will improve
markedly in the new future.

Example The PyClaw package [32, 4] combines the CLAWPACK [31]
library for solving hyperbolic systems of partial differential equations on
mapped Cartesian grids with the PETSc [6] library parallel linear algebra
and scalable solution nonlinear equations. Incorporation of the PETSc li-
brary allowed parallelization of the solvers in both Clawpack and Sharp-
Claw [22] in only 300 lines of Python, as detailed in [23]. PETSc parallel
data structures, in particular the DA object for structured grid parallelism,
were exposed to Clawpack using Python numpy arrays as intermediary struc-
tures. This allowed no-copy access by both C and Fortran, as well as easy
inspection in the Python code itself. In fact, since numpy structures are
used for both wrappers, any PyClaw script can be run in parallel using the
PETSc extension PetClaw simply by replacing the call to import pyclaw

with import petclaw as pyclaw. The hybrid code showed excellent weak
scaling, when modeling the interaction of a shock with a low-density bubble
in a fluid, on all 65,536 cores of the Shaheen supercomputer at KAUST.
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[27] Andreas Klöckner. PyOpenCL. http://mathema.tician.de/

software/pyopencl, 2011.
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