<html><head></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><br><div><div>On May 25, 2012, at 4:20 PM, Jed Brown wrote:</div><br class="Apple-interchange-newline"><blockquote type="cite"><div class="gmail_quote">On Fri, May 25, 2012 at 3:16 PM, Mark F. Adams <span dir="ltr"><<a href="mailto:mark.adams@columbia.edu" target="_blank">mark.adams@columbia.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div style="word-wrap:break-word">Yes your are right, simply scaling the PC will result in scaling the eigenvalues and hence the Cheby factors.</div></blockquote><div><br></div><div>But that isn't the significant result, it's that even if a preconditioner selectively and perfectly damps the highest eigenvalues (without rescaling other modes), this Cheby configuration will also damp those modes well since the polynomial "keeps" 95% of that damping.</div></div></blockquote><div><br></div><div>This is a very soft argument Jed, this may not be differential geometry but it is still math ...</div><div><br></div><div>You bring up a good point, if your PC kills the highest modes then they are gone because you only ever work with the preconditioned system.</div><div><br></div><div>But you can never kill a mode completely and because Cheby blows up out of its range, on the high end, then even if there a little high stuff left you need to include it in the range of Cheby.</div><br><blockquote type="cite"><div class="gmail_quote">
<div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div style="word-wrap:break-word"><div><div class="h5"><div><br><div><div>On May 25, 2012, at 11:54 AM, Jed Brown wrote:</div>
<br><blockquote type="cite"><div class="gmail_quote">On Fri, May 25, 2012 at 9:06 AM, Mark F. Adams <span dir="ltr"><<a href="mailto:mark.adams@columbia.edu" target="_blank">mark.adams@columbia.edu</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">

<div><div>On May 25, 2012, at 9:42 AM, Jed Brown wrote:</div><br><blockquote type="cite"><p>The high end of the GS preconditioned operator is still high frequency. If it wasn't, then GS would be a spectrally equivalent preconditioner.</p>


</blockquote><div><br></div></div><div>Huh?  If I damp Jacobi on the 3-point stencil with 0.5 then the high frequency is _not_ the "high end of the preconditioned operator". It is asymptotically 0. Does that mean it is spectrally equivalent? </div>


</blockquote></div><br><div>When I said "high" frequency, I didn't mean "highest" frequency.</div><div><br></div><div>The low end of the spectrum (that you can't capture) is relatively unperturbed by local smoothers.</div>

<div><br></div><div>So let's look at a damped Jacobi preconditioner. Suppose D = [diag(A)]^{-1}. If you weight it by w=0.5 or whatever, the Chebyshev(2) error propagation operator still looks like</div><div><br></div>

<div>(I - a w D A) (I - b w D A)</div><div><br></div><div>where a and b come from the target interval and we build eigenvalue estimates using K = w D A, so we'll produce exactly the same polynomial as w=1.</div><div>
<br>
</div><div>We need better visualization for modes, but if the preconditioned operator K = P^{-1}A has maximum eigenvalue of 1, the second order Chebyshev polynomial targeting [0.1, 1.1] is about (1 - 0.25 K) (1 - 0.95 K). Thus, if P^{-1} perfectly corrects the high energy mode, we will use more than 0.95 of that correction.</div>

<div><br></div><div><br></div><div>Please correct the above reasoning if I've messed up.</div>
</blockquote></div><br></div></div></div></div></blockquote></div><br>
</blockquote></div><br></body></html>