<div class="gmail_quote">On Fri, Dec 23, 2011 at 12:19, Mark F. Adams <span dir="ltr"><<a href="mailto:mark.adams@columbia.edu">mark.adams@columbia.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div><div>Eisenstat is not computing with zero data if there is no initial guess, right? I'm not sure I understand you here.</div></div></blockquote><div><br></div><div>I'm thinking of, e.g. third order Cheby preconditioned by GS.</div>
<div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div><div class="im"><br><blockquote type="cite"><div>I know the theory doesn't argue for it, but G-S with Cheby sometimes wins over everything else I've tried. </div>
</blockquote><div><br></div></div><div>People damp G-S for convection etc, which is what Cheb/GS does. Do you do this for SPD systems?</div></div></blockquote><div><br></div><div>No, I was doing it for the thermo/lid-driven cavity, for example.</div>
<div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div><div class="im"><br><blockquote type="cite"><div>Is there any hope of doing nonlinear G-S where the user can provide something moderately simple?</div>
</blockquote><br></div></div><div>Nonlinear should be very simple actually. Just replace my hacks into (MPI)AIJ matrices with your own operator.</div></blockquote></div><br><div>Sure, but what does the user need to provide? How much code can we reuse between the matrix-based implementation and the nonlinear implementation?</div>