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Abstract� In this paper� we consider the so�called �inexact Uzawa� algorithm for iteratively
solving block saddle point problems� Such saddle point problems arise� for example� in �nite element
and �nite di�erence discretizations of Stokes equations� the equations of elasticity and mixed �nite
element discretization of second order problems� We consider both the linear and nonlinear variants
of the inexact Uzawa algorithm� We show that the linear method always converges as long as the
preconditioners de�ning the algorithm are properly scaled� Bounds for the rate of convergence are
provided in terms of the rate of convergence for the preconditioned Uzawa algorithm and the reduction
factor corresponding to the preconditioner for the upper left hand block� In the nonlinear case� the
inexact Uzawa algorithm is shown to converge provided that the nonlinear process approximating the
inverse of the upper left hand block is of su�cient accuracy� Bounds for the nonlinear iteration are
given in terms of this accuracy parameter and the rate of convergence of the preconditioned Uzawa
algorithm� Applications to the Stokes equations and mixed �nite element discretization of second
order elliptic problems are discussed and �nally� the results of numerical experiments involving the
algorithms are presented�

Key words� inde�nite systems� iterative methods� preconditioners� saddle point problems� Stokes
equations� Uzawa algorithm
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�� Introduction� This paper provides a new analysis for the inexact Uzawa
method applied to the solution of saddle point systems which arise in the discretization
of various systems of partial di�erential equations� Such systems typically are obtained
when �multiplier� or mixed discretization techniques are employed� Examples of these
include the discrete equations which result from approximation of elasticity problems�
Stokes equations and sometimes linearizations of Navier�Stokes equations ���� �	��� �	
��
�	��� In addition� these systems result from Lagrange multiplier ���� �
�� ���� and mixed
formulations of second order elliptic problems �	��� ����� �����

We shall consider iterative solution of an abstract saddle point problem� Let H�

and H� be �nite dimensional Hilbert spaces with inner products which we shall denote
by ��� ��� There is no ambiguity even though we use the same notation for the inner
products on both of these spaces since the particular inner product will be identi�ed by
the type of functions appearing� We consider the abstract saddle point problem�

�
A BT

B �

��
X
Y

�
�

�
F
G

�
��	�	�

where F � H� and G � H� are given and X � H� and Y � H� are the unknowns� Here
A� H� �� H� is assumed to be a linear� symmetric� and positive de�nite operator� In
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addition� the linear map BT � H� �� H� is the adjoint of B� H� �� H�� Applying block
elimination to �	�	� yeilds

BA��BTY � BA��F �G��	���

Clearly� BA��BT is symmetric and nonnegative and a straightforward computation

shows that

�BA��BTV� V � � sup
U�H�

�V�BU��

�AU�U�
��	���

Consequently� a necessary and su�cient condition for the unique solvability of �	�	� is
that the Ladyzhenskaya�Babu�ska�Brezzi condition hold� i�e�

sup
U�H�

�V�BU��

�AU�U�
� c�kV k� for all V � H� ��	�
�

for some positive number c�� Here k � k denotes the norm in the space H� �or H��
corresponding to the inner product ��� ���

One could iteratively solve �	��� for Y by conjugate gradient �or preconditioned
conjugate gradient� iteration �	��� Then X is obtained by X � A���F � BTY �� The
Uzawa method �	� is a particular implementation of a linear iterative method for solving
�	���� One common problem with the methods just described is that they require
the evaluation of the action of the operator A�� in each step of the iteration� For
many applications� this operation is expensive and is also implemented as an iteration�
The inexact Uzawa methods replace the exact inverse in the Uzawa algorithm by an
�incomplete� or �approximate� evaluation of A��� These algorithms are de�ned in
Section � and 
� They were also studied in �	���

There are other general iterative techniques for solving saddle point problems of
the form of �	�	�� e�g�� ���� �
�� ���� ����� In �
�� a preconditioner for A is introduced
and system �	�	� is reformulated as a well conditioned symmetric and positive de�nite
algebraic system which may be solved e�ciently by applying the conjugate gradient
algorithm� In ����� the authors consider the convergence properties when the minimal
residual algorithm is applied to a more direct preconditioned reformulation of �	�	��
Both of the above mentioned techniques incorporate preconditioning and avoid the
inversion of A� Other interesting methods for solving �	�	� that also do not require the
action of A�� can be found in ��� and ����

There is also a variety of application speci�c techniques that depend strongly on
the particular approximation spaces� geometry of the domain etc� In the case of the
mixed approximation of second order problems� those include domain decomposition
techniques �	��� a reduction technique involving the use of additional Lagrange multi�
pliers �		�� as well as an inde�nite preconditioner �	
��

The inexact Uzawa algorithms are of interest because they are simple and have
minimal computer memory requirements� This could be important in large scale sci�
enti�c applications implemented for todays computing architectures� In addition� an
Uzawa algorithm implemented as a double iteration can be transformed trivially into
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an inexact Uzawa algorithm� It is not surprising that the inexact Uzawa methods are
widely used in the engineering community�

In this paper we present new estimates for the inexact Uzawa algorithm both in
the linear and nonlinear case� In the former case� the evaluation of A�� is replaced by
the inverse of a linear preconditioner� Theorem ��	 shows that the resulting algorithm
always converges and gives bounds on the rate of convergence provided that the precon�
ditioner is properly scaled� The inexact Uzawa algorithm in the nonlinear case replaces
the evaluation of A�� by some approximate nonlinear process� Theorem 
�	 shows that
the resulting algorithm converges provided that the nonlinear approximation to A�� is
suitably accurate� More restrictive results for variants of the inexact Uzawa algorithms
have already appeared in the literature �	��� �����

The outline of the remainder of the paper is as follows� In Section �� we de�ne
and motivate the linear version of the inexact Uzawa algorithm� Section � provides an
analysis of this algorithm� In Section 
� the nonlinear version of the inexact Uzawa
algorithm is de�ned and analyzed� Section � discusses a model application to the
Stokes problem while Section � considers a model application to a mixed �nite element
discretization of a second order problem boundary value problem� Finally� the results of
numerical experiments involving the inexact Uzawa algorithms are given in Section 
�
A comparison with some other methods is presented as well�

�� The abstract inexact Uzawa algorithm� In this section� we de�ne
the inexact Uzawa method when linear preconditioners are used� This algorithm is

motivated by �rst considering the Uzawa iteration �	� which can be de�ned as follows�
Algorithm ��� �Uzawa�� For X� � H� and Y� � H� given� the sequence

f�Xi� Yi�g is de�ned� for i � 	� �� � � �� by

Xi�� � Xi �A��
�
F � �AXi �BTYi�

�
�

Yi�� � Yi � ��BXi�� �G��
���	�

with � a given real number�
Let EY

i � Y � Yi be the iteration error generated by the above method� It is easy
to show that

EY
i�� � �I� �BA��BT �EY

i �

Let c� denote the largest eigenvalue of BA
��BT � Then� Yi converges to Y if � is chosen

such that

� � max�	� c��� c�� � 	� � 	�

In this case� Xi and Yi converge respectively to X and Y with a rate of convergence
bounded by �i�

One problemwith the above method is that it may converge slowly ifBA��BT is not
well conditioned� Thus� it is natural to introduce a preconditioner QB � H� �� H�� We
assume that QB is linear� symmetric and positive de�nite and de�ne the preconditioned
Uzawa algorithm as follows�
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Algorithm ��� �Preconditioned Uzawa�� For X� � H� and Y� � H� given�
the sequence f�Xi� Yi�g is de�ned� for i � 	� �� � � �� by

Xi�� � Xi �A��
�
F � �AXi �BTYi�

�
�

Yi�� � Yi �Q��B �BXi�� �G��
�����

For convenience of notation� we have absorbed the parameter � into the precondi�
tioner QB� Accordingly� we assume that QB is scaled so that

�BA��BTW�W � � �QBW�W � for all W � H�������

Note that since QB is positive de�nite� it follows that

�	� ���QBW�W � � �BA��BTW�W � for all W � H�����
�

holds for some � in the interval ��� 	�� In practice� e�ective preconditioners satisfy ���
�
with � bounded away from one�

If EY
i � Y � Yi where Yi is generated by ����� then

EY
i�� � �I�Q��B BA��BT �EY

i �

Clearly� Q��B BA��BT is symmetric with respect to the inner product

� V�W �� �QBV�W � for all V�W � H��

Let k�kQB denote the corresponding norm

kWkQB �� W�W ���� �

Then by ����� and ���
��

���EY
i

���
QB

� �i
���EY

�

���
QB

�

Here and in the sequel� for a symmetric and positive de�nite linear operator L on Hj�
j � 	� �� k � kL will denote the norm �L�� ������

One problem with the above algorithms is that they require the computation of the
action of the operator A�� at each step of the iteration� For many of the applications�
this is an expensive operation which is also done iteratively� This leads to a two level
iteration� an inner iteration for computing the action of A�� coupled with the outer
Uzawa iteration ���	� or ������ The inexact Uzawa method replaces the action of A��

by a preconditioner� A preconditioner QA is a linear operator QA � H� �� H� which is
symmetric and positive de�nite� In practice� good preconditioners are relatively cheap
to invert� For example� the computational cost for one evaluation of Q��A should be
comparable with the cost of evaluating the action of A �not A���� The inexact Uzawa
algorithm is then given as follows �this algorithm was also studied in �	����
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Algorithm ��� �Inexact Uzawa�� For X� � H� and Y� � H� given� the
sequence f�Xi� Yi�g is de�ned� for i � 	� �� � � �� by

Xi�� � Xi �Q��A

�
F �

�
AXi �BTYi

��
�

Yi�� � Yi �Q��B �BXi�� �G��
�����

One step of the inexact Uzawa algorithm involves an evaluation of each of the op�
erators� A� B� BT � Q��A and Q��B � In contrast to Krylov space minimization algorithms
such as conjugate residual� there are no discrete inner products involved in the itera�
tion� This makes this algorithm very well suited for implementation on contemporary
massively parallel computer architectures�

�� Analysis of the inexact Uzawa algorithm� In this section� we investigate

the stability and convergence rate of the inexact Uzawa algorithm de�ned above� The
main theorem will show that the inexact Uzawa algorithmwill always converge provided
that the preconditioners are properly scaled� By this we mean that ����� holds and that

�AW�W � � �QAW�W ����	�

for all W � H� with W �� �� The strict inequality above will be replaced by

�AW�W � � �QAW�W � for all W � H�������

in a subsequent corollary�
Bounds for the rates of iterative convergence will be provided in terms two natural

parameters� The �rst parameter has already been de�ned and is the convergence factor
� �see ���
�� for the preconditioned Uzawa algorithm� The second parameter is the rate
� at which the preconditioned iteration

Ui�� � Ui �Q��A �W �AUi�

converges to the solution of

AU �W�

If EA
i � U � Ui then

EA
i�� � �I�Q��A A�EA

i �

Clearly Q��A A is a symmetric operator with respect to the inner product �QA�� �� and
hence the convergence rate � is the largest eigenvalue of I�Q��A A� Alternatively� � is
the smallest number for which the inequality

�	� ���QAW�W � � �AW�W � for all W � H������

is satis�ed� It will sometimes be convenient to rewrite ����� as

��QA �A�W�W � � ��QAW�W � for all W � H�����
�
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The �rst convergence estimate will be provided in terms of a norm on H� � H�

which we shall now de�ne� Consider the bilinear form on H� �H� given by

��
U
V

�
�

�
R
S

��
� ��QA �A�U�R� � �QBV� S�������

By ���	�� ��� �� generates a norm on H� �H� which we shall denote by

�jT j� � �T� T ���� � for all T � H� �H��

We can now state the main result of this section�

Theorem ���� Assume that ����� and ����� hold and that � and � satisfy �����
and ����� respectively� Let fX�Y g be the solution pair for ������ fXi� Yig be de�ned by
the inexact Uzawa algorithm and set

ei �

�
X �Xi

Y � Yi

�
�

Then� for i � 	� �� � � � �

�jeij� � �i�je�j�������

where

� �
��	� �� �

q
���	� ��� � 
�

�
����
�

Remark ���� It is elementary to see that

� � 	� 	

�
�	� ���	� ���

Thus the inexact Uzawa method converges if ����� and ���	� hold� As expected� the
convergence rate deteriorates as either � or � approach one� In addition� if � tends to
zero �and thus� QA tends to A� then � �de�ned by ���
�� tends to �� the convergence
rate of the preconditioned Uzawa algorithm�

Proof� �Theorem ��	� We �rst derive a relationship between the errors ei�� and
ei� The components of the corresponding errors are denoted by EX

i � X � Xi and
EY
i � Y � Yi� From �	�	� and ����� we see that the errors satisfy the recurrence

EX
i�� �

�
I�Q��A A

�
EX
i �Q��A BTEY

i �

EY
i�� � EY

i �Q��B BEX
i���

�����
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Replacing EX
i�� in the second equation with its expression from the �rst gives

�
B�EX

i��

EY
i��

	
CA �

�
B� �I�Q��A A� �Q��A BT

Q��B B
�
I�Q��A A

�
�I�Q��B BQ��A BT �

	
CA
�
B� EX

i

EY
i

	
CA

	M
�
B� EX

i

EY
i

	
CA �

�����

This can be rewritten as

ei�� �Mei����	��

The proof of the theorem will be complete if we can show that the operator norm

�jMj� � sup
x�H��H�

�jMxj�
�jxj�

is bounded by � given by ���
��

The operator M can be written in the form

M �

�
B� �I �

� I

	
CA
�
B� ��I�Q��A A� Q��A BT

Q��B B
�
I�Q��A A

�
�I�Q��B BQ��A BT �

	
CA

	 EM��

It is straightforward to check that both E and M� are symmetric in the ��� ���inner
product� Let M� denote the adjoint of M with respect to ��� ��� Then we have

M� � �EM��
� �M�E

and

M�M �M�E�M� �M�
��

Consequently�

�jMj�� � sup
x�H��H�

�Mx�Mx�

�x� x�
� sup

x�H��H�

�M�Mx� x�

�x� x�

� sup
x�H��H�

�M�
�x� x�

�x� x�
� sup

�i���M��

j�ij��

Therefore� to estimate the norm ofM� it su�ces to bound the spectrum 	�M�� ofM��
Since M� is symmetric with respect to the ��� �� inner product� its eigenvalues are real�
We shall bound the positive and negative eigenvalues of M� separately�
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We �rst provide a bound for the positive eigenvalues ofM�� The operator I�Q��A A

is symmetric with respect to the inner product ��QA�A��� ��� Moreover� it follows from
���	� that it is positive de�nite and its positive square root is well de�ned� Let

D �

�
B� ������I�Q��A A���� �

� I

	
CA �

It follows from ���	� that D is invertible and from ����� that

�jDxj� � �jxj� for all x � H� �H�����		�

Let N � D��M�D��� Then

N �

�
B� ��I ����L

����L� �I� L�L�

	
CA���	��

where L � �I�Q��A A�����Q��A BT and L� � Q��B B�I�Q��A A�����
The largest eigenvalue �m of M� satis�es

�m � sup
x�H��H�

�M�x� x�

�x� x�
� sup

x�H��H�

�NDx�Dx�
�x� x�

� sup
x�H��H�

�NDx�Dx� �Dx�Dx�
�Dx�Dx� �x� x� � sup

y�H��H�

�N y� y�

�y� y�
�

We used ���		� for the last inequality above� Since both D andM� are symmetric with
respect to ��� ��� it follows that N is also� Consequently� �m is bounded by the largest
eigenvalue of N �

Let � be a nonnegative eigenvalue of N with corresponding eigenvector f
�� 
�g�
i�e��

��
� � ����L
� � �
��

����L�
� � �I� L�L�
� � �
��
���	��

Eliminating 
� in the above equations gives

��L�L
� � ��� ����� 	�
�

and hence

� � � L�L
�� 
� �� ��� ���� � 	� � 
�� 
� � ����	
�

By ����� and ���
�� it follows that

� L�L
�� 
� � � �BQ��A BT
�� 
�� � �	� ���BA��BT
�� 
��

� �	� ���	� �� � 
�� 
� � �
���	��
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Since � � � and � is nonnegative� we see from the �rst equation in ���	�� that if 
� � �
then 
� � �� Consequently� 
� is not equal to zero� Thus� from ���	
� and ���	��� we
get

�� � ��	� ��� � � � �

from which it follows that � � � where � is given by ���
�� This provides the desired
bound for the positive eigenvalues of M��

We next estimate the negative eigenvalues of M�� Let � be a negative eigenvalue
of M� with corresponding eigenvector �
�� 
��� i�e��

�
�
I�Q��A A

�

� �Q��A BT
� � �
��

Q��B B
�
I�Q��A A

�

� �

�
I�Q��B BQ��A BT

�

� � �
��

���	��

The �rst equation in ���	�� together with ���
� imply that if 
� � � then 
� � ��
Consequently� any eigenvector must have a nonzero component 
��

Multiplying the �rst equation of ���	�� by Q��B B from the left and adding it to the
second one yields

�	� ��
� � �Q��B B
�����	
�

Substituting ���	
� into the �rst equation of ���	�� and taking an inner product with
QA
� gives

���	� ����	 � ��QA �A�
�� 
�� � ��Q��B B
��B
�� � ��

which we rewrite as

��Q��B B
��B
�� � ��	� ����QA
�� 
�� � �	� ���A
�� 
������	��

For any V � H��

�Q��B BV�BV � � sup
W�H�

�V�BTW ��

�QBW�W �
� sup

W�H�

�A���V�A����BTW ��

�QBW�W �

� sup
W�H�

�AV� V ��BA��BTW�W �

�QBW�W �
� �AV� V ��

���	��

For the last inequality above we used ������ Applying ���	�� to the left hand side of
���	�� and ���
� on the right hand side of ���	�� gives

��A
�� 
�� � �� � ����QA
�� 
�� � ��A
�� 
��

or

� � �� � ����QA
�� 
���
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This implies that � � �p� since 
� is nonzero� It is elementary to check that
p
� � �

where � is de�ned by ���
�� This completes the proof of the theorem�
The proof of Theorem ��	 depended on ���	� so that the inner product ��� �� induced

a norm� The next result shows that the inexact Uzawa method converges even when
only ����� is assumed� It also provides an estimate for the error EX

i � X�Xi in a more
natural norm�

Corollary ���� Assume that ����� and ����� hold and that � and � satisfy �����
and ����� respectively� Let fX�Y g be the solution pair for ������ let fXi� Yig be de�ned
by the inexact Uzawa algorithm and set EX

i � X �Xi and EY
i � Y � Yi� Then

�QBE
Y
i � E

Y
i �

��� � �i�je�j�������

where � is given by ���	�� In addition�

�AEX
i � E

X
i �

��� � �i���je�j������	�

The above inequalities hold for i � 	� �� � � ��
Proof� Taking the ��� ���inner product of the �rst equation of ����� with QAe

X
i���

applying the Schwarz inequality� and ����� gives

�QAE
X
i � E

X
i � � ��QA �A�EX

i��� E
X
i �� �BTEY

i��� E
X
i �

� ��QA �A�EX
i��� E

X
i���

�����QA �A�EX
i � E

X
i �

���

��BA��BTEY
i��� E

Y
i���

����AEX
i � E

X
i �

���

� ���QA �A�EX
i��� E

X
i��� �

���EY
i��

����
QB

�����QAE
X
i � E

X
i �

����

Thus� applying ����� gives

�AEX
i � E

X
i � � �QAE

X
i � E

X
i � � �jei��j���������

Let QA�� � �I�QA for � � � � 	� �� Then ���	� holds for QA�� and by ������

�	� ����QA��W�W � � �AW�W � for all W � H�������

for �� � �� �� Fix �X�� Y�� � H��H� and consider the sequence of iterates fX��i� X��ig
generated by the inexact Uzawa algorithm which replaces QA in the �rst equation of
����� by QA��� Applying Theorem ��	 gives that the error

e��i �

�
X �X��i

Y �X��i

�

satis�es

�je��ij�� � �i��je���j������
�
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where �j � j�� � ��� ������ �
��

U
V

�
�

�
R
S

��
�

� ��QA�� �A�U�R� � �QBV� S��

and

�� �
��	� ��� �

q
���	� ���� � 
��

�
�

Clearly� ���EX
��i

���
QB

� �je��ij���������

Inequality ������ results from combining ����
� and ������ and taking the limit as �
tends to zero�

In a similar manner we prove ����	�� Taking the limit in ����
� as � tends to zero
gives

�jei��j� � �i���je�j��������

Combining ������ and ������ gives ����	� and completes the proof of the corollary�

Remark ���� More restrictive convergence results �in these norms� were obtained
by Queck ����� He proved a convergence result which required stronger conditions with
respect to the scaling of QA and QB� In particular� there are cases which fail to satisfy
the hypothesis of the theory of ���� yet convergence is guaranteed by the corollary
above� In addition� there are many cases when the convergence estimates given above
are substantially better than those of �����

�� Analysis of the nonlinear inexact Uzawa algorithm� As was pointed
out in Section �� the Uzawa algorithm is often implemented as a two level iterative
process� an inner iteration for computing A�� coupled with the outer Uzawa iteration
���	� or ������ In this section we investigate the stability and convergence rate of
an abstract inexact Uzawa algorithm where the computation of the action of A�� is
replaced with that of an approximation to A�� which results from applying a nonlinear
iterative process for inverting A� Two examples of such approximations come from
de�ning the approximate inverse by a preconditioned conjugate gradient iteration or
the operator which results from the application of a multigrid cycling algorithm with a
nonlinear smoother�

The nonlinear approximate inverse is described as a map � � H� �� H�� For � � H��
���� is an �approximation� to the solution 
 of

A
 � ���
�	�

We shall assume that our approximation satis�es

k���� �A���kA � �k�kA�� for all � � H��
���
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for some � � 	� As will be seen below� �
��� is a reasonable assumption which is
satis�ed by the approximate inverse associated with the preconditioned conjugate gra�
dient algorithm� It also can be shown that �
��� holds under reasonable assumptions
for approximate inverses de�ned by one sweep of a multigrid algorithm with conjugate
gradient smoothing�

Perhaps the most natural example of a nonlinear approximate inverse is de�ned in
terms of the preconditioned conjugate gradient procedure ��
�� Let QA be a symmetric
and positive de�nite operator on H� and consider applying n steps of the conjugate
gradient algorithm preconditioned by QA to solve the problem �
�	� with a zero starting
iterate� We de�ne ���� � 
n where 
n is the resulting approximation to 
� The
preconditioned conjugate gradient algorithm �PCG� provides the best approximation
�with respect to the norm corresponding to the �A�� ���inner product� to the solution 

in the space

Kn � span
n
��Q��A A�� � � � � �Q��A A�n���

o
�

It is well known that this implies ���

k
n �A���kA � �k�kA�� for all � � H� ��
���

where

� � �n � 	

cosh�n cosh�� ��
�

Here � � ���Q��A A� � 	�����Q��A A� � 	� and ��Q��A A� is the condition number of
Q��A A� Note that �n is a decreasing function of n and �� is less than one� Thus� �
���
holds in the PCG example� In fact�

�n � �

�
��Q��A A���� � 	

��Q��A A���� � 	

�n
�

Since �n tends to zero as n tends to in�nity� it is possible to make �n as small as we
want by taking a suitably large number PCG iterations�

The variant of the inexact Uzawa algorithm we investigate in this section is de�ned
as follows�

Algorithm ��� �Nonlinear Uzawa�� For X� � H� and Y� � H� given� the
sequence f�Xi� Yi�g is de�ned� for i � 	� �� � � �� by

Xi�� � Xi ��
�
F �

�
AXi �BTYi

��
�

Yi�� � Yi �Q��B �BXi�� �G��
�
�
�

Clearly� �
�
� reduces to the preconditioned Uzawa algorithm ����� if ��f� � A��f for
all f � H� and �
�
� reduces to the inexact Uzawa algorithm if � is a linear operator
Q��A �
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We will provide bounds for the rate of convergence for the above algorithm in terms
of two parameters� the convergence factor � for the preconditioned Uzawa algorithm
de�ned in ���
� and the parameter � of �
���� The main result of this section provides a
su�cient condition on � for convergence of the nonlinear Uzawa algorithm and bounds
for the resulting rate of convergence�

Theorem ���� Assume that ����� and ����� hold and that � satis�es ������ Let
fX�Y g be the solution pair for ����� and fXi� Yig be de�ned by the nonlinear Uzawa
algorithm ������ Then Xi and Yi converge to X and Y respectively if

� �
	� �

�� �
��
���

In this case the following inequalities hold


�

	 � �
�AEX

i � E
X
i � � �QBE

Y
i � E

Y
i �

� ��i
�

�

	 � �
�AEX

� � E
X
� � � �QBE

Y
� � E

Y
� �

��
���

and

�AEX
i � E

X
i � � �	 � ���	 � �����i��

�
�

	 � �
�AEX

� � E
X
� � � �QBE

Y
� � E

Y
� �

�
�
�
�

where

� �
�� � � �

q
��� � ��� � 
��	� ��

�
��
���

Remark ���� The result of Theorem 
�� is somewhat weaker than the results ob�

tained in Section � for the linear case due to the threshold condition �
��� on �� In
the case of PCG� it is possible to take su�ciently many iterations n so that �
��� holds
for any �xed � and ��Q��A A�� In applications involving partial di�erential equations�
� and ��Q��A A� may depend on the discretization parameter h� If� however� ��Q��A A�
can be bounded and � can be bounded away from one independently of h then by
Theorem 
��� a �xed number �independent of h� of iterations of PCG are su�cient to
guarantee convergence of the nonlinear Uzawa algorithm�

Remark ���� An analysis of �
�
� is given in �	�� and �	�� in the case of applications
to Stokes problems� The su�cient condition for convergence derived there is that the
iterate Xi�� satis�es

kF �BTYi �AXi��k � �kBXi �GkQ��
A

��
���

where � is independent of the mesh size� The above norms are not natural for procedures
such as PCG and multigrid with nonlinear smoothing� PCG does not give rise to
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monotone error behavior in the norm k�k even though convergence is guaranteed by the
canonical bound �
����

kF �BTYi �AXi��kA�� � �kF �BTYi �AXikA��
and equivalence of norms in �nite dimensional spaces� Such norm equivalences depend
on the mesh parameter h� A second problem with the requirement �
��� is that the
norm on the right hand side converges to zero as Xi converges to the solution X� This
means that even thought � is �xed independent of h� considerably more iterations of
PCG may be required to satisfy �
��� as the approximate solution converges�

Proof� �Theorem 
��� We start by deriving norm inequalities involving the errors
EX
i and EY

i � As in ������

EX
i�� � EX

i ��
�
AEX

i �BTEY
i

�
�

EY
i�� � EY

i �Q��B BEX
i���

�
�	��

The �rst equation above can be rewritten

EX
i�� � �A�� ���

�
AEX

i �BTEY
i

�
�A��BTEY

i ��
�		�

It follows from the triangle inequality� �
��� and ����� that���EX
i��

���
A

� ��
���EX

i

���
A
� �BA��BTEY

i � E
Y
i �

����

��BA��BTEY
i � E

Y
i �

���

� �
���EX

i

���
A
� �	 � ��

���EY
i

���
QB

�

�
�	��

Using �
�		� in the second equation of �
�	��� we obtain

EY
i�� �

�
I�Q��B BA��BT

�
EY
i �Q��B B

�
A�� ��

� �
AEX

i �BTEY
i

�
�

Since Q��B BA��BT is a symmetric operator in the � �� � ��inner product� it follows
from ���
� that ����I�Q��B BA��BT

�
EY
i

���
QB

� �
���EY

i

���
QB

�

Thus� by the triangle inequality� ������ ���	�� and �
�������EY
i��

���
QB

� �
���EY

i

���
QB

�
���Q��B B

�
A�� ��

� �
AEX

i �BTEY
i

����
QB

� �
���EY

i

���
QB

�
����A�� ���

�
AEX

i �BTEY
i

����
A

� �
���EY

i

���
QB

� �
����EX

i

���
A
� �BA��BTEY

i � E
Y
i �

���
�

� �� � ��
���EY

i

���
QB

� �
���EX

i

���
A
�

�
�	��
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Let us adopt the notation �
x�
y�

�
�
�
x�
y�

�

for vectors of nonnegative numbers x�� x�� y�� y� if x� � x� and y� � y�� Repeated

application of �
�	�� and �
�	�� gives

�
�
���EX

i

���
A���EY

i

���
QB

	
A �M i

�
�
���EX

�

���
A���EY

�

���
QB

	
A�
�	
�

where M is given by

M �

�
� 	 � �
� � � �

�
�

We consider two dimensional Euclidean space with the inner product
�
x�
y�

�
�

�
x�
y�

��
�

�

	 � �
x�x� � y�y��

A trivial computation shows that M is symmetric with respect to the b�� �c�inner prod�
uct� It follows from �
�	
� that

�

	 � �
�AEX

i � E
X
i � � �QBE

Y
i � E

Y
i � �

���

�
�
���EX

i

���
A���EY

i

���
QB

	
A �

�
�
���EX

i

���
A���EY

i

���
QB

	
A
����

�
���
M i

�
�
���EX

�

���
A���EY

�

���
QB

	
A �M i

�
�
���EX

�

���
A���EY

�

���
QB

	
A
����

� ��i
�

�

	 � �
�AEX

� � E
X
� � � �QBE

Y
� � E

Y
� �

�

where � is the norm of the matrix M with respect to the b�� �c�inner product� Since
M is symmetric in this inner product� its norm is bounded by its spectral radius� The
eigenvalues of M are the roots of

�� � ��� � ���� ��	� �� � ��

It is elementary to see that the spectral radius of M is equal to its positive eigenvalue
which is given by �
����

Examining the expression for � given by �
��� we see that � is an increasing function
of � for any �xed � � ��� 	�� Moreover� � � 	 for

� �
	� �

�� �
�

This completes the proof of the �
����
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To prove �
�
� we apply the arithmetic�geometric mean inequality to �
�	�� and get
for any positive ��

���EX
i

����
A
� �	 � ����

���EX
i��

����
A
� �	 � �����	 � ���

���EY
i��

����
QB

�

Inequality �
�
� follows taking � � 	�	�� and applying �
���� This completes the proof
of the theorem�

�� Application to a Stokes problem � In this section we consider an ap�
plication of the theory developed in the previous sections to solving inde�nite systems
of linear equations arising from �nite element approximations of the Stokes equations�
For simplicity we restrict our discussion to the following model problem� Find u and p
such that

��u�rp � g in ��

r � u � f in ��

u � � on ���Z
�
p�x� dx � ��

���	�

where � is the unit cube in Rd� d��� �� � is the componentwise Laplace operator� u is
a vector valued function representing the velocity� and the pressure p is a scalar func�
tion� Generalizations to domains with more complex geometry and variable coe�cients
equations are possible�

Let L�
���� be the set of functions in L���� with zero mean value on � and H����

denote the Sobolev space of order one on � �cf�� ����� ������ The space H�
� ��� consists

of those functions in � whose traces vanish on ��� the boundary of �� Also� �H�
�����

d

will denote the product space consisting of vector valued functions with each vector
component in H�

� ����
In order to derive the weak formulation of ���	� we multiply the �rst two equations

of ���	� by functions in �H�
� ����

d and L�
���� respectively and integrate over � to get

D�u�v� � �p�r � v� � �g�v� for all v � �H�
� ����

d�

�r � u� q� � �f� q� for all q � L�
�����

�����

Here ��� �� is the L���� inner product and D��� �� denotes the vector Dirichlet form for
vector functions on � de�ned by

D�v�w� �
dX
i��

Z
�
rvi � rwi dx�

We next identify approximation subspaces of �H�
�����

d and L�
����� In order to

avoid unnecessary complexity of the presentation only a two dimensional example will
be considered� The discussion here is very closely related to the examples given in ���
and �
� where additional comments and other applications can be found� We partition �
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� ��

�� �

Fig� ���� The square mesh used for �H�� the support
�shaded� and values for a typical �ij�

into �n� �n square shaped elements� where n is a positive integer and de�ne h � 	��n�
Let xi � ih and yj � jh for i� j � 	� � � � � �n� Each of the square elements is
further partitioned into two triangles by connecting the lower right corner to the upper
left corner� Let Sh be the space of functions that vanish on �� and are continuous and
piecewise linear with respect to the triangulation thus de�ned� We set H� 	 Sh�Sh 

�H�

� ����
�� The choice of H� is motivated by the observation ��	� that the space �H� of

functions that are piecewise constant with respect to the square elements together with
H� as de�ned above form an unstable pair of approximation spaces� This means that
the functions from H� � �H� do not satisfy �	�
� with a constant c� independent of the
discretization parameter h� To overcome this problem� one may consider a smaller space
de�ned as follows� Let �kl for k� l � 	� � � � � �n be the function that is one on the square
element �xk��� xk���yl��� yl� and vanishes elsewhere� De�ne �ij � �H� for i� j � 	� � � � � n
by

�ij � ��i����j��� ��i��j�� � ��i����j � ��i��j

�see Figure ��	�� The space H� is then de�ned by

H� 	
n
W � �H� � �W��ij� � � for i� j � 	� � � � � n

o
�

The pair H��H� now satis�es �	�
� with a constant c� independent of h ��	�� Moreover�
the exclusion of the functions �i�j does not change the order of approximation for the
space since the H� still contains the piecewise constant functions of size �h�

The approximation to the solution of ����� is de�ned as the unique pair �X�Y � �
H� �H� satisfying

D�X�V � � �Y�r � V � � �g� V � for all V � H��

�r �X�W � � �f�W � for all W � H��
�����

Obviously� ����� is a system of linear equations whose unique solvability is guaranteed
by �	�
��
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The system ����� can be reformulated in terms of operators as follows� Let

A � H� �� H�� �AU� V � � D�U� V �� for all U� V � H��

B � H� �� H�� �BU�W � � �r � U�W �� for all U � H�� W � H��

BT � H� �� H�� �BTW�V � � �W�r � V �� for all V � H�� W � H��

It follows that the solution �X�Y � of ����� satis�es �	�	� with F equal to the L����
projection of f into H� and G equal to the �L������ projection of g into H��

It is straightforward to check that ����� holds forA� B� and BT as above� Moreover�
it follows from �	�
� that ���
� holds with � independent of the mesh size h�

Remark ���� It appears from the de�nition of the above operators that one has
to invert Gram matrices in order to evaluate the action of A� BT and B on vectors
from the corresponding spaces� In practice� the H� Gram matrix inversion is avoided
by suitable de�nition of the preconditioner QA� For the purpose of computation� the

evaluation of Q��A f for f � H� is de�ned as a process which acts on the inner product
data �f� 
i� where f
ig is the basis for H�� Moreover� from the de�nition of the Uzawa�
like algorithms in the previous sections� it is clear that every occurrence of A or BT is
followed by an evaluation of Q��A � Thus the inversion of the Gram matrix is avoided
since the data for the computation of Q��A � ��BTQ�
i� and �AV� 
i��� can be computed
by applying simple sparse matrices� In the case of this special choice of H�� it is possible
to compute the operator B in an economical way �see Remark � of �
�� and we can take
QB to be the identity� For more general spaces H�� the inversion of Gram matrices can
be avoided by introducing a preconditioner QB whose inverse is implemented acting on
inner product data as in the H� case above�

We still need to provide preconditioners for A� However� A consists of two copies
of the operator which results from a standard �nite element discretization of Dirichlet�s
problem� There has been an intensive e�ort focused on the development and analysis
of preconditioners for such problems� In our examples Section 
� we will use a precon�
ditioning operator which results from a V�cycle variational multigrid algorithm� Such
a preconditioner is known to be scaled so that both ����� holds and ���
� holds with �
bounded away from one independently of the mesh parameter h�

�� Applications to mixed �nite element discretizations of elliptic prob�

lems� In this section we discuss applications of the algorithms analyzed in Section �
to solving inde�nite systems arising from mixed �nite element discretizations of second
order partial di�erential equations� For this application� it will be relatively easy to
construct preconditioners QA while the development of a suitable operator QB is more
di�cult�

The basic problem we consider here is

�r �Krp � f in ��

p � � on ���
���	�
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where K � fki�jgdi�j�� is a symmetric positive de�nite matrix whose entries are bounded
functions of the spatial variable� � is a bounded domain with polygonal or polyhedral
boundary in d�dimensional Euclidean space for d � � or �� This is a classical model
problem in continuum mechanics or  uid  ow in porous media�

Introducing a new variable u� ���	� can be written as a �rst order system as follows�

u � Krp in ��

r � u � �f in ��

p � � on ���

�����

In the typical applicationsK is the elasticity!permeability tensor� u usually represents
the stress!velocity� p is the displacement!pressure� The mixed method naturally takes
into account constraints that appear in the variational formulation of a given di�erential
problem� e�g�� r � u � f � and provides direct approximations to the two variables of
interest� u and p� Often these features are more attractive then those corresponding to
the standard �nite element method�

Then the weak formulation of ����� is

�K��u� V � � �p�r � V � � �� for all V � Hdiv����

�r � u�W � � ��f�W �� for all W � L�����
�����

The space Hdiv��� is the set of vector functions in �L�����d whose divergences are
also in L����� Here� as in the previous section� ��� �� denotes the L���� or �L������

inner product� The mixed discretizations involve the introduction of two approximation
subspaces� H� 
 Hdiv��� for the velocities and H� 
 L���� for the pressures� To
illustrate this type of application� we will only discuss the simplest mixed �nite element
discretization of ���	�� namely the lowest order Raviart�Thomas spaces ����� We assume
some familiarity with the mixed approximation approach and only give limited detail�

Detailed development can be found in �	��� ����� and �����

Let Th be a partitioning of � into simplices of quasi�uniform size h� The space H�

is de�ned to be the vector valued functions which are linear on the simplices and have
a continuous constant normal component on each of the face of the mesh� The space
H� consists of the set functions which are constant �discontinuous across the faces� on
each of the simplices� The mixed �nite element approximation is de�ned to be the pair
�X�Y � satisfying

�K��X�V � � �Y�r � V � � �� for all V � H��

�r �X�W � � ��f�W �� for all W � H��

The operators B and BT are de�ned as in the previous section� However� for this
application� the operator A � H� �� H� is de�ned by

�AU� V � � �K��U� V � for all U� V � H��
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In terms of these operators� we get a discrete system of linear equations of type �	�	�
with F � � and G � fh� where fh is the L

���� orthogonal projection of f into H��

The operator A is well conditioned and hence a simple multiple of the identity
provides an e�ective QA� On the other hand� the operator BA��BT is not uniformly
well conditioned� In fact� it exhibits a condition number growth like h�� and should
be preconditioned in order to get an e�cient algorithm of type ����� or ������ It is well
known that BA��BT behaves like a discretization of a second order operator� In some
applications� it can be preconditioned by cell centered techniques ��
�� multigrid ���� or
incomplete Choleski factorization of BBT �����

	� Numerical examples� In this section we present the results from numerical
experiments that illustrate the theory developed in the earlier sections� We also report
similar results obtained from applying the conjugate gradient algorithm for saddle point
problems introduced in �
��

Even though the most e�ective algorithms result from the use of good precondi�
tioners� we shall initially present results using one of the worst possible preconditioners�
the identity operator� This is important since in some engineering applications� good
preconditioners may not be readily available� We also report results when e�ective
preconditioners are employed�

The test problem was ���	� with � 	 ��� 	��� g � � and f � �� Clearly� its exact
solution was zero for both pressure and velocity� We started the iterations with an
arbitrary but �xed initial iterate� All of the iterative methods considered are functions
of the error and thus� iterating for a problem with a zero solution and a nonzero starting
guess is equivalent to solving a related problem with a nonzero solution and a zero initial
guess� We used the discretization described in Section ��

Our objectives in conducting the numerical experiments were to establish experi�
mentally the conclusions from the theoretical analysis of the algorithms tested and to
assess their e�ectiveness in terms of error reduction after �xed number of iterations�
The same nonzero initial iterate was used for all algorithms� As discussed in Section ��
we used QB 	 I� The experimental results are organized in four tables�

In Table 
�	 we give results for three algorithms using QA equal to an appropriate
multiple of the identity� The algorithms are described as follows�

UID � The algorithm ����� with QA � "�maxI and QB � I� Here "�max is an upper
bound for the largest eigenvalue of A�

USTD � The algorithm �
�
� with QB � I and � de�ned by one step of the
steepest descent method �SDM� applied to approximate the action of A���

BPID � The preconditioned conjugate gradient algorithm for saddle point prob�
lems given in �
� with QA � "�minI� where "�min is a lower bound for the smallest
eigenvalue of A and QB � I� Notice that the scaling required by Theorem 	 of
�
� is in the opposite direction of ���	��

The reported error values in Table 
�	 represent the relative error norm after i iterations
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computed by

Errori �

�
B�D�EX

i � E
X
i � �

���EY
i

����
D�EX

� � E
X
� � � kEY

� k�

	
CA
���

��
�	�

Clearly� this is not the norm which appears in the theory and one cannot expect the
errors to behave in a monotone way� This explains the increase in the reported error
for UID when h � 	��� and h � 	��
� That the USTD method appears convergent
for h � �� is surprising since �
��� is not satis�ed for these applications� The BPID
method converges considerably faster in these examples since the saddle point method
of �
� is known to give a rate of convergence which exhibits square root acceleration in
cases when poor preconditioners are employed� As expected� all methods deteriorate
due to lack of preconditioning as the mesh size is decreased�

Table ���

Errors in UID� USTD and BPID by �����

h ��� iterations

UID USTDy BPID

	!� 
���	��� ��	�	��	 z����	����

	!	� ��
 ����	��� ����	����

	!�� 	�� ��� 	�	�	��


	!�
 ��
 
�� ����	���
y one SDM step per inexact Uzawa iteration�
z for ��
 BPID iterations�

In order to establish experimentally the convergence of UID and USTD� we ran
these two algorithms for ���� iterations� The results are shown in Table 
��� Even
though improved convergence is observed in all cases when compared to Table 
�	� the
UID algorithm still appears unstable for h � 	��
� We ran UID for 	���� iterations
and observed an error of ���
�� Although convergent� the inexact Uzawa method with
such a poor preconditioner converges too slowly to be of practical use�

The above results may at �rst appear to contradict the validity of the theory of
Section 
� The reason that the methods appear divergent at a relatively low numbers of
iterations is that the theorems guarantee monotonicity of the errors in norms which are
di�erent from those used in �
�	�� Our next experiment was designed to illustrate the
monotone convergence of UID and BPID predicted by Theorem ��	 and Theorem 	
in �
�� Accordingly� we measured the errors in the norms appearing in the theorems� In
the case of UID� we use

Errori �

�
B� "�max

���EX
i

���� �D�EX
i � E

X
i � �

���EY
i

����
"�max kEX

� k� �D�EX
� � E

X
� � � kEY

� k�

	
CA
���

��
���
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Table ���

Errors in UID and USTD by �����

h ���� iterations

UID USTDy

	!� � ����	����

	!	� ��
�	��	 ����	���	

	!�� ����	��� ��	�	��


	!�
 	�� ��
�	���
y one SDM step per inex�
act Uzawa iteration�

In the case of BPID� we used

Errori �

�
B�D�EX

i � E
X
i �� "�min

���EX
i

���� � ���EY
i

����
D�EX

� � E
X
� �� "�min kEX

� k� � kEY
� k�

	
CA
���

��
���

The convergence results in these norms are reported in Table 
��� Note that all of
the reported errors are less than one� We made additional runs at lower number of
iterations� All runs re ected the monotone error behavior in these norms as guaranteed
by the theory�

Table ���

Errors in UID and BPID by ����� and �����

h ��� iterations

UID BPID

	!� 
����	��� z��	�	����

	!	� ��	� ��	�	����

	!�� ���� 	�	�	��


	!�
 ��

 ����	���
z for ��
 BPID iterations�

The last experiment given in this section is intended to illustrate the performance
of the algorithms when e�ective preconditioners are used� In this case� we de�ne Q��A to
be the operator which corresponds to one V�cycle sweep of variational multigrid with
point Gauss�Seidel smoothing� The order of points in the Gauss�Seidel iteration was
reversed in pre� and post�smoothing� Note that QA automatically satis�es ����� and
satis�es ����� with � independent of h� We consider the following two algorithms�



Analysis of the inexact Uzawa algorithm ��

UMG � The algorithm ����� with QB � I and Q��A being the action of multigrid�
BPMG � The algorithm from �
� with the A block preconditioned by ��Q��A and

QB � I�

Table 
�
 contains the error reductions for this example� The e�ect of applying a better
preconditoner QA is clearly seen when we compare the results from UID �Tables 
�	
and 
��� with those from UMG� Notice that the UMG data in Table 
�
 show little�
if any� deterioration as the mesh size becomes small�

Table ���

Errors in UMG and BPMG by �����

h 
� iterations

UMGy BPMGy

	!� 	���	��� 	���	����

	!	� ��
�	��� ����	��


	!�� 	���	��	 	���	���

	!�
 ����	��	 
���	��

y one multigrid V�cycle per
iteration�

In all of the reported results� the reformulation method of �
� shows faster con�
vergence� Nevertheless� the inexact Uzawa methods are still of interest since they are
robust� simple to implement� have minimal memory requirements and avoid the ne�
cessity of computing inner products� These properties may make the inexact Uzawa
methods attractive in certain applications�
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