<div dir="ltr">We ended up recording mostly login information into getting into the supercomputer, but the slides are available here: <a href="http://aron.ahmadia.net/amcs312/petsc-ex50/">http://aron.ahmadia.net/amcs312/petsc-ex50/</a><div>
<br></div><div>What is the PETSc idiom for grabbing the fine level solution after using SNESGridSequence?  I could not find any documentation about where the solutions, and the only way I've been able to do it so far is to set a SNESMonitor and save the grid out to disk when I am at high enough resolution.</div>
<div><br></div><div>A<br><br><div class="gmail_quote">On Sun, Oct 9, 2011 at 9:33 PM, Aron Ahmadia <span dir="ltr"><<a href="mailto:aron.ahmadia@kaust.edu.sa">aron.ahmadia@kaust.edu.sa</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">
<div dir="ltr">Thanks guys, I will try to send you pictures/video after the demonstration this Wednesday.<div><br></div><div><font color="#888888">-Aron</font><div><div></div><div class="h5"><br><br><div class="gmail_quote">
On Sun, Oct 9, 2011 at 5:54 PM, Barry Smith <span dir="ltr"><<a href="mailto:bsmith@mcs.anl.gov" target="_blank">bsmith@mcs.anl.gov</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><br>
   Note also you can use -da_refine <n>  Then it takes the initial grid sizes and refines n times before creating the DA, then it does multigrid with n+1 levels. If you do it this way you don't have to mess around with figuring what numbers to put in -da_grid_x 127   or whatever.<br>


<font color="#888888"><br>
    Barry<br>
</font><div><div></div><div><br>
<br>
<br>
On Oct 9, 2011, at 8:00 AM, Jed Brown wrote:<br>
<br>
> On Sun, Oct 9, 2011 at 05:23, Aron Ahmadia <<a href="mailto:aron.ahmadia@kaust.edu.sa" target="_blank">aron.ahmadia@kaust.edu.sa</a>> wrote:<br>
> Jed pointed out that I should be demo-ing ex50, not ex19, so I tried to port my stuff over.  Oddly enough, if I am using 2^n grid spacing, everything falls over. 2^n+1 works, though, which seems non-obvious to me.<br>


><br>
> --- petsc-ex50/ex50 ‹master*➔ M⁇› » mpirun -n 4 ./ex50 -da_grid_x 65 -da_grid_y 65 -pc_type mg -pc_mg_levels 3<br>
> lid velocity = 0.000236686, prandtl # = 1, grashof # = 1<br>
> Number of Newton iterations = 6<br>
><br>
> ./ex50 -da_grid_x 64 -da_grid_y 64 -pc_type mg -pc_mg_levels 2<br>
><br>
> lid velocity = 0.000244141, prandtl # = 1, grashof # = 1<br>
> [0]PETSC ERROR: --------------------- Error Message ------------------------------------<br>
> [0]PETSC ERROR: Arguments are incompatible!<br>
> [0]PETSC ERROR: Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx 64 Mx 32!<br>
><br>
> DMMG always started with a coarse problem and refined a given number of times regardless of whether linear or nonlinear multigrid is being used.<br>
><br>
> Now we have<br>
><br>
> -snes_grid_sequence NLEVELS<br>
><br>
> which starts with whatever grid you give it and refines. If you use -snes_grid_sequence N -pc_type mg, then the number of levels in PCMG will be automatically changed inside the grid sequencing so that it references the same coarse level.<br>


><br>
> If instead, you only do linear multigrid, then you pass<br>
><br>
> -pc_type mg -pc_mg_levels N<br>
><br>
> and your specified problem is _coarsened_ to produce the number of levels. That coarsening requires some divisbility in the grid size. The reason it is 2^n+1 instead of 2^n is because this example uses a vertex-centered instead cell-centered discretization. This is natural for finite differences instead of finite volumes, but either method could be used with either centering strategy.<br>


<br>
</div></div></blockquote></div><br></div></div></div></div>
</blockquote></div><br></div></div>