On Fri, Sep 16, 2011 at 4:38 PM, Jed Brown <span dir="ltr"><<a href="mailto:jedbrown@mcs.anl.gov">jedbrown@mcs.anl.gov</a>></span> wrote:<br><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">
<div class="im"><div class="gmail_quote">On Fri, Sep 16, 2011 at 23:21, Matthew Knepley <span dir="ltr"><<a href="mailto:knepley@gmail.com" target="_blank">knepley@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">

<div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">it still converges, conditionally to the same solution as exact<br>
newton. Variations for A yield different rates of convergence. When<br>
A=1, you get the classical Picard iteration that Matt mentioned (?).<br></blockquote><div><br></div></div><div>Not even close.</div></blockquote></div><div><br></div></div>From Barry's description at the top of this thread:<div>

<br><div> x^{n+1}   = x^{n}  - lambda F(x^{n})</div></div><div><br></div><div><br></div><div>This looks oddly similar to</div><div><br></div><div> x^{n+1}   = x^{n}  - J(x^n)^{-1} F(x^{n})</div><div><br></div><div>I wonder where I've seen that before.</div>

</blockquote></div><br>So you are saying that you agree with me, what is coded is in fact the Picard iteration, and we are done arguing?<div><br></div><div>   Matt<br clear="all"><div><br></div>-- <br>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>
-- Norbert Wiener<br>
</div>