On Fri, Sep 16, 2011 at 6:21 PM, Sean Farley <span dir="ltr"><<a href="mailto:sean@mcs.anl.gov">sean@mcs.anl.gov</a>></span> wrote:<br><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">
<div class="gmail_quote"><div class="im"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div class="gmail_quote"><div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">


<div>If one defines a Picard method as any fixed-point iteration then x^{n+1} = x^{n} - J(x^{n})^{-1} F(x^{n}) is a Picard iteration for the equation x = x - J(x)^{-1} F(x) in other words Newtons' method is a Picard method; is this true? Is Picard algorithm a synonym for fixed point iteration?</div>



</blockquote><div><br></div></div><div><a href="http://en.wikipedia.org/wiki/Picard_iteration" target="_blank">http://en.wikipedia.org/wiki/Picard_iteration</a> (redirects to "Fixed point iteration")</div><div>


<br></div><div>Also, Tim Kelley's book describes "fixed point iteration" as "also called nonlinear Richardson iteration, Picard iteration, or the method of successive substitution".</div></div></blockquote>


<div><br></div></div><div>Actually, the first (in recorded history, of course) version of fixed point iteration "originated in antiquity, appearing, for example, in the writings of Heron of Alexandria [1]." Perhaps, we should, in the interest of not being historically blind, call it the Heron method.</div>
</div></blockquote><div><br></div><div>Heron defined it only for a particular function.</div><div><br></div><div>   Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">
<div class="gmail_quote"><div>[1] E. T. Bell. The Development of Mathematics. Second ed. McGraw-Hill, New York 1945.</div></div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>
-- Norbert Wiener<br>