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Abstract. A key to good processor utilization for sparse matrix computations is storing the
data in the format that is most conducive to fast access by the memory system. In particular,
for sparse matrix triangular solves the traditional compressed sparse matrix format is poor, and
minor adjustments to the data structure can increase the processor utilization dramatically. Such
adjustments involve storing the L and U factors separately and storing the U rows “backwards” so
that they are accessed in a simple streaming fashion during the triangular solves. Changes to the
PETSc libraries to use this modified storage format resulted in over twice the floating-point rate for
some matrices. This improvement can be accounted for by a decrease in the cache misses and TLB
(transaction lookaside buffer) misses in the modified code.

Key words. sparse triangular solve, ILU-factorization, matrix-vector product, data access
pattern, data layout

1. Introduction. Many of the basic computational kernels in numeric software
libraries were developed and implemented based on decades-old algorithms and tech-
niques without serious consideration of computer architecture, for example, the com-
plex memory layout and data-fetching behavior. Traditionally, numerical algorithms
and the associated programming subroutines are evaluated based on such factors as
the mathematical error analysis, the rate of algorithmic convergence, and the floating
point (flop) counts. Hence many applications fail to achieve the anticipated speedup
because of a mismatch between the data access patterns in the code and the data
access patterns that are fastest on the given hardware.

As PETSc developers [2, 3], we have long been aware of the various memory bot-
tlenecks in sparse matrix computation. We feel strongly that the data access pattern
should become a standard in the evaluation of numerical algorithms and their imple-
mentations. Recently, we explored this concept on a computational kernel in PETSc:
the sparse triangular solve. In particular, our focus is on sparse triangular
solves that arise from incomplete LU factorizations, where the cost of the
factorization is relatively low and there are many sparse triangular solves,
hence decreasing the time of the sparse triangular solves is crucial for fast
solvers. Through a simple reorganization of the data structure during the matrix
factorization, we witnessed over 100 percent acceleration (that is, more than a
doubling of the flop rate) in the sparse triangular solve on a single core as a result
of much better utilization of the memory subsystem. We are not changing how much
data is accessed, nor are we changing the numerical algorithm. We are changing only
the locations where the data is stored and the accessing pattern so that the
data accessing is as fast as possible. Essentially, we are decreasing the number of
cache misses, optimizing the cache line usage (rather than having parts of cache
lines not needed in the next step of computation), and reducing the number of TLB
(transaction lookaside buffer) misses. The TLB is the mechanism used to map virtual
memory addresses to their physical address that is then used by the hardware to load
the data from memory. Since the TLB is generally small, addressing virtual memory
addresses that are “near” each other is faster than randomly accessing very different
virtual memory addresses.

The compressed sparse row (CSR) format is the most commonly used sparse ma-
trix storage format. For sparse matrices with no additional structure (small dense
blocks or values along certain diagonals, for example) the CSR format is appropriate
for the sparse matrix-vector product kernel. Many sparse matrix software packages
provide LU and/or ILU factorization and triangular solver kernels, which are imple-
mented by using some simple variant of the CSR format without consider-
ing the data accessing pattern employed in the successive triangular solves.
For example, the Euclid [13, 14], SPARSKIT ILUT [17], and the PETSc
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version 3[2] ILU implementations store the L and U factors interlaced
by row, that is, as [L(1, :), U(1, :), L(2, :), U(2, :), ..., L(n, :), U(n, :)]. AztecOO
with IFPACK [19] and hypre’s pilut [5, 8] store the L and U separately,
but still have the rows starting with the first [L(1, :), L(2, :), ..., L(n, :)] and
[U(1, :), U(2, :), ..., U(n, :)] in the order of matrix factorization. The new ILU
factorization code in SuperLU [15] uses a more sophisticated storage for
L and U, but the data layout still requires “jumping around” the data
during the sparse triangular solves that could perhaps be optimized.

All these variants are poor for system utilization because they result in slow
memory access patterns on the back triangular solves. Hence the triangular solves
as implemented have much lower floating-point rates than do their corresponding
matrix-vector products. By a simple change in the data layout we show that one
can bring the floating-point rate of the triangular solves closer to that of the sparse
matrix-vector products.

In this paper we measure the efficiency of the triangular solves by their flop rates.
High flop rates are not the ultimate goal; faster time to solution is the ultimate goal.
But since for triangular solves the number of floating point operations remains the
same, the flop rate is a good measure of the overall utilization of the compute node.
Sparse matrix computations are always memory bandwidth limited. That is, some
upper bound on the speed of computation is determined by the raw speed at which
the memory can provide data for the process; see, for example, [1, 9, 10]. In this paper
the focus is on how to get a particular computation closer to the memory bandwidth
limit by taking into account other aspects of the memory system than simple raw
bandwidth.

2. Modifications to the Data Structure. The sparse triangular solve and
matrix-vector product are the dominating computational kernels in many large-scale
iterative solvers. When an application uses Krylov subspace iteration with matrix-
based preconditioners, for example, the incomplete LU (ILU) preconditioner, the
matrix-vector product and sparse triangular solve are called repeatedly for generating
Krylov subspaces; they often consume 70% or more of the total execution time.

For a sparse matrix A stored in the conventional compressed row format, a prac-
tical way of implementing the ILU preconditioner is described in [18].

Algorithm sparse LU factor:
Input: sparse matrix A
Output: sparse matrix factors L and U
For i = 1, 2, · · · , n Do:

w := A(i, :)

For k = 1, 2, · · · , i− 1 Do:

multiplier := A(i, k)/A(k, k)
update w := w −multiplier ∗ U(k, :)

EndDo

store w in L(i, :) and U(i, :)
EndDo

For the ILU algorithm, the arithmetic operations described above occur only in the
matrix entries that fall into a given nonzero sparse pattern. A straight forward
implementation of the sparse LU factor algorithm uses the standard compressed row
format for the input matrix A. The entries of the output matrix factors L and U are
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naturally stored together in a single array with their rows interlaced:

[L(1, :), U(1, :), L(2, :), U(2, :), ..., L(n, :), U(n, :)]. (2.1)

The sparse triangular solve then follows the numerical factorization.

Algorithm sparse triangular solve:
Input: matrix factor L and U , right-hand side vector b
Output: solution vector x such that LUx approximates b
# forward substitution

For i = 1, 2, · · · , n Do

x(i) := b(i) − L(i, 1 : i− 1) ∗ [x(1), · · · , x(i− 1)]T

EndDo

# backward substitution

For i = n, n− 1, · · · , 1 Do

x(i) := (x(i) − U(i, i + 1 : n) ∗ [x(i + 1), · · · , x(n)]T )/U(i, i)
EndDo

For each call of sparse triangular solve, the array of factor values in (2.1) is
accessed twice: first, in the order of

L(1, :)→ L(2, :)→ · · · → L(n, :)

during the forward substitution, then in the order of

U(n, :)→ U(n− 1, :)→ · · · → U(1, :)

during the backward substitution. Here, for simplicity we present the solves without
row and column permutations.

The flop counts for the sparse matrix-vector product are equal to twice the number
of nonzero entries in A, which is the same as the flop counts for the sparse triangular
solve when matrices L and U are obtained from the ILU(0) matrix factorization.
However, because of the difference in the data layout of the matrix entries in the
original matrix A and the matrix factors L and U , that is, linear, contiguous
array access in A and non-contiguous array access in L and U , the execution time of
a sparse triangular solve usually takes twice as long as that of the sparse matrix-vector
product (see Tables 3.1 - 3.5). The delay in the sparse triangular solve becomes
more significant for larger matrices.

A careful examination of the sparse triangular solve algorithm reveals that the
memory access can be improved through a simple reorganization of the matrix entries
in the factored matrix L and U . Instead of storing the rows of L interlaced with U ’s
in the order being computed from the sparse LU factor, we arrange them in the order
of accessing by the sparse triangular solve. Therefore the matrix entries are stored
contiguously as

[L(1, :), L(2, :), ..., L(n, :), U(n, :), ..., U(2, :), U(1, :)]. (2.2)

With this data layout, the sparse triangular solve reads the array of factor values, in a
linear fashion, (2.2) only once, from beginning to end, in comparison with two sweeps
of (2.1) as in the previous implementation.

The idea of reorganizing matrix data is simple. Its implementation is simple,
too: in the subroutine sparse LU factor, we store U entries from the end of the
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array of factor values instead of next to L’s, and we modify the values of the row
and diagonal pointers accordingly. The existing subroutine sparse triangular solve
requires only trivial editing that ensures the correct rows of L and U are accessed
during the forward and backward substitution. Yet, the numerical experiments show
an amazing acceleration: up to a 50 percent reduction in execution time.

Two important variants of the basic sparse triangular solves are as follows:
• Row and column permutations that are used to reduce fill in the factors or

improve the convergence of the iterative method.
• Point-block storage of the factored matrix where the matrix has “natural”

small blocks that it inherits from the continuous problem. For example, the
fully implicit discretization of the Euler equations leads to sparse matrices
with 5 by 5 dense blocks. In this case the CSR format is modified so only
a single column index is needed to indicate the block column of the entire
block. Computations using this block CSR format are faster because fewer
loads of the column indices are needed.

Both these extensions can handle the modified storage proposed and benefit from it
in the same manner.

3. Numerical Results. We tested the new data layout on two extreme cases
– the traditional 7-point stencil on a unit cube and a matrix arising from the dis-
cretization of the compressible Euler equations – in order to measure the effect of
the modified data structure on both extremely sparse matrices and those arising in
applications with more nonzeros per row.

The experiments were conducted on a MacBook Pro with 2.8 GHz Intel Core 2
Duo and 1.067 GHz DDR3 memory using one core. This system has 6 megabytes of
cache and a cache line of 64 bytes. The STREAMS TRIAD benchmark performance
[16] is 4.97 gigabytes per second of achieved memory bandwidth with dynamically
allocated memory and a slightly higher 5.06 gigabytes per second with statically allo-
cated memory. ILU(0) with no row and column permutations was used for both CSR
and block CSR formats. We are currently modifying all of the PETSc ILU solvers to
use the new format and have obtained similar performance improvements with those
as well. Our performance results were obtained by running the entire GMRES algo-
rithm and profiling the relevant matrix-vector products and sparse triangular solves.
We have done so because standalone benchmarking often produces unreasonably opti-
mistic performance projections since much of the data is already in cache, whereas in
the actual application it will not be. The numerical results were obtained by making
multiple runs and using the average value; all runs had results within 5 percent of the
average.

The floating-point rates were obtained by using the Intel ICC compiler version
10.1 with -O3 optimization. The cache misses and TLB misses were obtained by using
the Apple profiling package Shark, Apple’s gcc version 4.0.1 with the -O3 option, and
the Intel hardware counters L2 CACHE LINE IN.DEMAND and DTLB MISSES.

We considered two cases:
• Extremely Sparse Matrix, created with the 7-point stencil finite-difference

scheme on a 65 by 65 by 65 cube. It ran for 46 iterations. The performance
results are given in Table 3.1.

• Block Sparse Matrix, the Jacobian matrix obtained from a fully implicit
compressible Euler code on a mapped C-H mesh [11, 12]. It has a natural
block size of 5. For this matrix we ran two studies. The first, where we
use the traditional compressed sparse row format, is given in Table 3.2. The
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Table 3.1
Performance Improvements for the Extremely Sparse Matrix

Matrix-Vector Triangular Solves
Product (SpMV ) Non-contiguous Array Contiguous Array

Flop rate (megaflops) 537 261 (49% of SpMV) 447 (83% of SpMV)
L2 cache misses (1,000,000) 19.6 33.6 20.4
TLB misses (1,000) 635 1, 300 750

Table 3.2
Performance Improvements for the Block Sparse Matrix

Matrix-Vector Triangular Solves
Product (SpMV ) Non-contiguous Array Contiguous Array

Flop rate (megaflops) 620 260 (42% of SpMV) 660 (106% of SpMV)
L2 cache misses (1,000,000) 12.6 17.5 13
TLB misses (1,000) 500 950 500

second, that uses the block compressed sparse row format, is given in Table
3.4.

Table 3.3
Performance Improvements of Triangular Solver With Intermediate Forms of the Implementation

Original Separate Traverse New
Implementation L and U Rows of U Backward Implementation

Extremely Sparse 260 428 428 447
Block Sparse 260 387 645 660

We next consider the question of how much of the performance im-
provement comes from separating the storage of L and U and how much
comes from storing rows of U in reversed order and thus allowing linear,
contiguous array access. Table 3.3 shows the mega-flop rate for

• Original Implementation: The rows of L and U are stored inter-
laced. Each row is accessed from the beginning to end.
• Separate L and U : The L and U are stored separately as

[L(1, :), L(2, :), ..., L(n, :), U(1, :), ..., U(n− 1, :), U(n, :)].

The rows of U are accessed as in the original implementation.
• Traverse rows of U backward: The L and U are stored separately

as above. Each row of U is accessed from end to beginning, instead
of beginning to end.
• New Implementation: The L and U are stored separately with the

rows of U stored backward as (2.2), which are then accessed in a
linear pattern from beginning to end during triangular solve.

This computation is run on the same system as those in Tables 3.1 and
3.2. For the very sparse matrix most of the benefit comes from separating
the L and U factors, no benefit comes traversing each row of U backwards
and a small benefit comes from storing the rows of U backwards. We note
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that the rows of U in the very sparse matrix case are so small that they
almost always fit within a single cache line. For the more representative
sparse block sparse matrix, the largest benefit comes from either traversing
the rows of U backwards or, slightly better, reversing the order of the rows
of U and traversing them forward.

Table 3.4
Performance Improvements for Block Sparse Matrix Using Block Compressed Sparse Row Storage

Matrix-Vector Triangular Solves
Product (SpMV) Non-contiguous Array Contiguous Array

Flop rate (megaflops) 890 468 (53% of SpMV) 758 (85% of SpMV)
L2 cache misses (1,000,000) 7.5 9.3 7.2
TLB misses (1,000) 350 610 330

In Table 3.5 we provide the flop rates for the three studies in the previous tables
for the IBM Blue Gene/P core, which is a PowerPC 450 running at 850 MHz with
memory running at 425 MHz.

We also selected 25 square matrices from the University of Florida’s sparse matrix
collection [6] with a minimum of 200,000 rows. The smallest improvement in the
flop rate was 30 percent and the largest 148 percent over all the matrices. The
average improvement was 98 percent (essentially twice as fast), with 64 percent of
the matrices at least doubling in floating-point performance of the triangular solves.
These computations were all computed on the Intel system.

Table 3.5
Flop Rate (in megaflops) Performance Improvements for the IBM Blue Gene/P Core

Matrix-Vector Triangular Solves
Product (SpMV) Non-contiguous Array Contiguous Array

7-point stencil 98 46 (47% of SpMV) 62 (63% of SpMV)
Euler 148 99 (66% of SpMV) 126 (85% of SpMV)
Euler with block CSR 303 198 (65% of SpMV) 260 (86% of SpMV)

In all cases, using linear contiguous array access in the sparse triangular solve
accelerates execution time up to 100 percent (that is, twice as fast) in comparison
with the non-contiguous array storage of matrix factors. The newly proposed lin-
ear, contiguous data access makes the sparse triangular solve almost as fast as
the sparse matrix-vector product. In our experiments, the time required for
the sparse ILU factorization with the newly proposed storage of L and U
remains almost same as the original implementation, so this is not a matter
of simply moving the computation time from one part of the code to another.

For the first experiment we now analyze the obtained flop rates and L2 cache
misses.

Flop rates: The matrix-vector product requires loading the double-precision ma-
trix value as well as the integer column index for each multiply-add performed. This
amounts to requiring loading 6 bytes per flop. A more careful analysis that includes
the vector that must be loaded and the fact that this matrix has 7 nonzeros per row
gives a more precise value of 6.57 bytes per flop. Dividing the STREAMS achieved
memory bandwidth of 4.97 gigabytes/second by 6.57 bytes/flop gives a bound on the
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achievable floating point rate of 756 megaflops. From Table 3.1 the actual achieved
value is 537 megaflops. For the sparse triangular solves, each row of the interlaced
L and U factors is of size 7, which means that in the lower triangular solves, though
only the L portions are needed since the cache line contains 8 double-precision num-
bers, the entire U is also loaded to the L2 cache. This situation will also hold for the
upper triangular solve. Hence the triangular solve as originally implemented loads all
the numerical values as well as most of the column indices twice, compared to once
for the matrix-vector product. Not surprising, the achieved flop rate for the original
triangular solves for this matrix is essentially half of the flop rate for the matrix-vector
product.

L2 cache misses: The number of cache misses can be estimated by the total
amount of data loaded divided by the cache size minus some correction factor that
takes into account prefetching and any other hardware optimizations [4]. We made
two sets of runs with prefetching enabled and disabled. Performance was identical,
indicating that prefetching was not being utilized in this code. Each matrix-vector
product for this matrix requires loads of 7n ∗ 12 bytes for the matrix entries and
column indices plus n ∗ 8 bytes for the vector. Multiplying this by the 46 calls to
the product routine and then dividing by 64 bytes per cache line gives a lower bound
on the number of cache misses of 18 million. The actual count in Table 3.1 is 19.6
million. For the sparse triangular solve, making the pessimistic assumption that the
U values loaded during the lower triangular solve are not available in the cache for the
upper triangular solves, one would expect 35 million cache misses. In fact, since the
cache is 6 megabytes, many of the last rows of U will be retained in the cache, and the
actual number of cache misses was a slightly lower 33.6 million. Note that in Table
3.2 where the matrix has many more nonzeros per row, the excessive number of cache
misses needed by the old sparse triangular solve is a lower percentage than in Table
3.1 because only a portion of the U factors are brought into L2 cache during the lower
triangular solve. Storing the L and U separately and the U backwards eliminates
nearly all the unused portions of the cache line so that the new sparse triangular
solve requires only a very small percentage more cache misses than the matrix-vector
product, regardless of the number of nonzeros per row. The TLB misses exhibit a
similar reduction as the cache misses do with the new data layout for similar reasons
since the data is now being accessed sequentially.

4. Conclusion. We have presented a case study in sparse matrix computations
where a small change to the data structure for a sparse matrix results in a dramatic im-
provement in the performance of a computational kernel that uses the data structure.
We note that for ILU factorizations, the factorization comes first, and traditionally
that has dictated the data layout of the L and U factors. The factorization routine
loads the factor values, in a natural way, from beginning to end. But this means
that the solve routines access the values “backwards.” The new data structure
maintains the same run time of the ILU factorization and accelerates the
triangular solve significantly. This emphasizes the importance of picking
a data structure based not on how it is created first but rather on how it
will be accessed efficiently and frequently.

We plan to study data structures for other sparse matrix computations such as
successive overrelaxation and Eisenstat’s trick [7] to improve the performance of those
computations as well.
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