<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr">
<div id="divtagdefaultwrapper" style="font-size:12pt;color:#000000;font-family:Calibri,Arial,Helvetica,sans-serif;" dir="ltr">
<p>Dear Paul,</p>
<p><br>
</p>
<p>I am confused about something. I realize now that for the components of B_{ij} to be exact, quadrature for </p>
<p><br>
</p>
<p>\int_\Omega \phi_i \phi_j dx = (\phi_i, \phi_j ).</p>
<p><br>
</p>
<p>Since in Nek5000 we have (N+1)^dim GLL points for the velocity grid, does that mean every time an inner product is being evaluated in the code this is not exact?</p>
<p><br>
</p>
<p>If I want B_{ij} to be exact, do I need to evaluate the basis functions on more GLL quadrature points (say, N+2)?</p>
<p><br>
</p>
<p>I'm just wondering if I am understanding the problem correctly. <span style="font-size: 12pt;">For now, multiplying "rhs" by "binvm1" like you suggested produced accurate results for my dummy problem (vx**2), I may have to do exact integration in the long
run.</span></p>
<p><br>
</p>
<p>Thank you,</p>
<p><br>
</p>
<p>Juan Diego</p>
</div>
</body>
</html>