cl__1 = 1; Point(1) = {-25, -25, 0, 1}; Point(2) = {25, -25, 0, 1}; Point(4) = {-25, 25, 0, 1}; Point(5) = {25, 25, 0, 1}; Point(7) = {-1.4142135623, -1.4142135623, 0, 1}; Point(8) = {1.4142135623, -1.4142135623, 0, 1}; Point(9) = {-1.4142135623, 1.4142135623, 0, 1}; Point(10) = {1.4142135623, 1.4142135623, 0, 1}; Point(11) = {0, 0, 0, 1}; Point(12) = {1, 0, 0, 1}; Point(13) = {0.9970300197601318, -0.0004207300080452114, 0, 1}; Point(14) = {0.9937499761581421, -0.0008835400221869349, 0, 1}; Point(15) = {0.9901300072669983, -0.001392400008626282, 0, 1}; Point(16) = {0.9861299991607666, -0.001951699960045516, 0, 1}; Point(17) = {0.9817100167274475, -0.002566199982538819, 0, 1}; Point(18) = {0.976830005645752, -0.003240799997001886, 0, 1}; Point(19) = {0.9714400172233582, -0.003981099929660559, 0, 1}; Point(20) = {0.9654899835586548, -0.004792999941855669, 0, 1}; Point(21) = {0.9589200019836426, -0.005682699847966433, 0, 1}; Point(22) = {0.9516599774360657, -0.006657199934124947, 0, 1}; Point(23) = {0.9436399936676025, -0.007723500020802021, 0, 1}; Point(24) = {0.9347800016403198, -0.008889400400221348, 0, 1}; Point(25) = {0.925000011920929, -0.01016299985349178, 0, 1}; Point(26) = {0.9142000079154968, -0.0115520004183054, 0, 1}; Point(27) = {0.9022700190544128, -0.01306699961423874, 0, 1}; Point(28) = {0.8890900015830994, -0.01471399981528521, 0, 1}; Point(29) = {0.8745399713516235, -0.01650499925017357, 0, 1}; Point(30) = {0.858460009098053, -0.0184480007737875, 0, 1}; Point(31) = {0.8416299819946289, -0.02044299989938736, 0, 1}; Point(32) = {0.8249099850654602, -0.02238800004124641, 0, 1}; Point(33) = {0.8082900047302246, -0.02428100071847439, 0, 1}; Point(34) = {0.7917699813842773, -0.02612599916756153, 0, 1}; Point(35) = {0.7753499746322632, -0.02792399935424328, 0, 1}; Point(36) = {0.7590299844741821, -0.02967499941587448, 0, 1}; Point(37) = {0.7428100109100342, -0.03138099983334541, 0, 1}; Point(38) = {0.7266700267791748, -0.03304199874401093, 0, 1}; Point(39) = {0.7106199860572815, -0.0346589982509613, 0, 1}; Point(40) = {0.6946499943733215, -0.03623199835419655, 0, 1}; Point(41) = {0.6787599921226501, -0.03776200115680695, 0, 1}; Point(42) = {0.6629499793052673, -0.0392489992082119, 0, 1}; Point(43) = {0.6472100019454956, -0.04069200158119202, 0, 1}; Point(44) = {0.6315400004386902, -0.0420910008251667, 0, 1}; Point(45) = {0.6159300208091736, -0.04344699904322624, 0, 1}; Point(46) = {0.6003900170326233, -0.04475900158286095, 0, 1}; Point(47) = {0.584909975528717, -0.04602500051259995, 0, 1}; Point(48) = {0.5694800019264221, -0.04724600166082382, 0, 1}; Point(49) = {0.5541099905967712, -0.04842000082135201, 0, 1}; Point(50) = {0.5387799739837646, -0.04954700171947479, 0, 1}; Point(51) = {0.5235000252723694, -0.05062500014901161, 0, 1}; Point(52) = {0.5082700252532959, -0.05165300145745277, 0, 1}; Point(53) = {0.4930700063705444, -0.05262900143861771, 0, 1}; Point(54) = {0.4778999984264374, -0.05355200171470642, 0, 1}; Point(55) = {0.4627699851989746, -0.05441899970173836, 0, 1}; Point(56) = {0.4476700127124786, -0.05522900074720383, 0, 1}; Point(57) = {0.4325900077819824, -0.05597800016403198, 0, 1}; Point(58) = {0.4175300002098083, -0.05666499957442284, 0, 1}; Point(59) = {0.4024899899959564, -0.05728600174188614, 0, 1}; Point(60) = {0.387470006942749, -0.05783800035715103, 0, 1}; Point(61) = {0.3724600076675415, -0.05831800028681755, 0, 1}; Point(62) = {0.3574599921703339, -0.05872299894690514, 0, 1}; Point(63) = {0.3424600064754486, -0.05904699862003326, 0, 1}; Point(64) = {0.3274700045585632, -0.05928599834442139, 0, 1}; Point(65) = {0.3124699890613556, -0.05943400040268898, 0, 1}; Point(66) = {0.2974700033664703, -0.05948600172996521, 0, 1}; Point(67) = {0.2824699878692627, -0.05943600088357925, 0, 1}; Point(68) = {0.2674500048160553, -0.05927500128746033, 0, 1}; Point(69) = {0.2524299919605255, -0.05899700149893761, 0, 1}; Point(70) = {0.2373899966478348, -0.05859300121665001, 0, 1}; Point(71) = {0.222340002655983, -0.0580499991774559, 0, 1}; Point(72) = {0.2072599977254868, -0.05735800042748451, 0, 1}; Point(73) = {0.1921699941158295, -0.0565049983561039, 0, 1}; Point(74) = {0.17705999314785, -0.05547099933028221, 0, 1}; Point(75) = {0.1619299948215485, -0.05423900112509727, 0, 1}; Point(76) = {0.1467899978160858, -0.0527850016951561, 0, 1}; Point(77) = {0.1322900056838989, -0.0511620007455349, 0, 1}; Point(78) = {0.1190399974584579, -0.04945399984717369, 0, 1}; Point(79) = {0.1069300025701523, -0.04768000170588493, 0, 1}; Point(80) = {0.09586799889802933, -0.04585599899291992, 0, 1}; Point(81) = {0.08577000349760056, -0.04399599879980087, 0, 1}; Point(82) = {0.076555997133255, -0.04211099818348885, 0, 1}; Point(83) = {0.06815300136804581, -0.0402120016515255, 0, 1}; Point(84) = {0.06049599871039391, -0.03830600157380104, 0, 1}; Point(85) = {0.05352399870753288, -0.03640000149607658, 0, 1}; Point(86) = {0.04718200117349625, -0.03449999913573265, 0, 1}; Point(87) = {0.04142000153660774, -0.03260999917984009, 0, 1}; Point(88) = {0.03619199991226196, -0.03073300048708916, 0, 1}; Point(89) = {0.03145699948072433, -0.02887200005352497, 0, 1}; Point(90) = {0.0271770004183054, -0.02702900022268295, 0, 1}; Point(91) = {0.0233169998973608, -0.02520499937236309, 0, 1}; Point(92) = {0.01984800025820732, -0.02340300008654594, 0, 1}; Point(93) = {0.01673999987542629, -0.02162200026214123, 0, 1}; Point(94) = {0.01396999973803759, -0.01986500062048435, 0, 1}; Point(95) = {0.0115149999037385, -0.01813299953937531, 0, 1}; Point(96) = {0.009355300106108189, -0.01642799936234951, 0, 1}; Point(97) = {0.00747139984741807, -0.0147529998794198, 0, 1}; Point(98) = {0.005847000051289797, -0.01311200018972158, 0, 1}; Point(99) = {0.004466100130230188, -0.01151099987328053, 0, 1}; Point(100) = {0.003312600078061223, -0.009954700246453285, 0, 1}; Point(101) = {0.002369200112298131, -0.008452000096440315, 0, 1}; Point(102) = {0.00161789997946471, -0.007011000066995621, 0, 1}; Point(103) = {0.001039199996739626, -0.005639600101858377, 0, 1}; Point(104) = {0.0006129799876362085, -0.004344400018453598, 0, 1}; Point(105) = {0.0003168400144204497, -0.003131099976599216, 0, 1}; Point(106) = {0.000129189997096546, -0.002002600114792585, 0, 1}; Point(107) = {2.965000021504238e-05, -0.0009594199946150184, 0, 1}; Point(109) = {2.965000021504238e-05, 0.0009594199946150184, 0, 1}; Point(110) = {0.000129189997096546, 0.002002600114792585, 0, 1}; Point(111) = {0.0003168400144204497, 0.003131099976599216, 0, 1}; Point(112) = {0.0006129799876362085, 0.004344400018453598, 0, 1}; Point(113) = {0.001039199996739626, 0.005639600101858377, 0, 1}; Point(114) = {0.00161789997946471, 0.007011000066995621, 0, 1}; Point(115) = {0.002369200112298131, 0.008452000096440315, 0, 1}; Point(116) = {0.003312600078061223, 0.009954700246453285, 0, 1}; Point(117) = {0.004466100130230188, 0.01151099987328053, 0, 1}; Point(118) = {0.005847000051289797, 0.01311200018972158, 0, 1}; Point(119) = {0.00747139984741807, 0.0147529998794198, 0, 1}; Point(120) = {0.009355300106108189, 0.01642799936234951, 0, 1}; Point(121) = {0.0115149999037385, 0.01813299953937531, 0, 1}; Point(122) = {0.01396999973803759, 0.01986500062048435, 0, 1}; Point(123) = {0.01673999987542629, 0.02162200026214123, 0, 1}; Point(124) = {0.01984800025820732, 0.02340300008654594, 0, 1}; Point(125) = {0.0233169998973608, 0.02520499937236309, 0, 1}; Point(126) = {0.0271770004183054, 0.02702900022268295, 0, 1}; Point(127) = {0.03145699948072433, 0.02887200005352497, 0, 1}; Point(128) = {0.03619199991226196, 0.03073300048708916, 0, 1}; Point(129) = {0.04142000153660774, 0.03260999917984009, 0, 1}; Point(130) = {0.04718200117349625, 0.03449999913573265, 0, 1}; Point(131) = {0.05352399870753288, 0.03640000149607658, 0, 1}; Point(132) = {0.06049599871039391, 0.03830600157380104, 0, 1}; Point(133) = {0.06815300136804581, 0.0402120016515255, 0, 1}; Point(134) = {0.076555997133255, 0.04211099818348885, 0, 1}; Point(135) = {0.08577000349760056, 0.04399599879980087, 0, 1}; Point(136) = {0.09586799889802933, 0.04585599899291992, 0, 1}; Point(137) = {0.1069300025701523, 0.04768000170588493, 0, 1}; Point(138) = {0.1190399974584579, 0.04945399984717369, 0, 1}; Point(139) = {0.1322900056838989, 0.0511620007455349, 0, 1}; Point(140) = {0.1467899978160858, 0.0527850016951561, 0, 1}; Point(141) = {0.1619299948215485, 0.05423900112509727, 0, 1}; Point(142) = {0.17705999314785, 0.05547099933028221, 0, 1}; Point(143) = {0.1921699941158295, 0.0565049983561039, 0, 1}; Point(144) = {0.2072599977254868, 0.05735800042748451, 0, 1}; Point(145) = {0.222340002655983, 0.0580499991774559, 0, 1}; Point(146) = {0.2373899966478348, 0.05859300121665001, 0, 1}; Point(147) = {0.2524299919605255, 0.05899700149893761, 0, 1}; Point(148) = {0.2674500048160553, 0.05927500128746033, 0, 1}; Point(149) = {0.2824699878692627, 0.05943600088357925, 0, 1}; Point(150) = {0.2974700033664703, 0.05948600172996521, 0, 1}; Point(151) = {0.3124699890613556, 0.05943400040268898, 0, 1}; Point(152) = {0.3274700045585632, 0.05928599834442139, 0, 1}; Point(153) = {0.3424600064754486, 0.05904699862003326, 0, 1}; Point(154) = {0.3574599921703339, 0.05872299894690514, 0, 1}; Point(155) = {0.3724600076675415, 0.05831800028681755, 0, 1}; Point(156) = {0.387470006942749, 0.05783800035715103, 0, 1}; Point(157) = {0.4024899899959564, 0.05728600174188614, 0, 1}; Point(158) = {0.4175300002098083, 0.05666499957442284, 0, 1}; Point(159) = {0.4325900077819824, 0.05597800016403198, 0, 1}; Point(160) = {0.4476700127124786, 0.05522900074720383, 0, 1}; Point(161) = {0.4627699851989746, 0.05441899970173836, 0, 1}; Point(162) = {0.4778999984264374, 0.05355200171470642, 0, 1}; Point(163) = {0.4930700063705444, 0.05262900143861771, 0, 1}; Point(164) = {0.5082700252532959, 0.05165300145745277, 0, 1}; Point(165) = {0.5235000252723694, 0.05062500014901161, 0, 1}; Point(166) = {0.5387799739837646, 0.04954700171947479, 0, 1}; Point(167) = {0.5541099905967712, 0.04842000082135201, 0, 1}; Point(168) = {0.5694800019264221, 0.04724600166082382, 0, 1}; Point(169) = {0.584909975528717, 0.04602500051259995, 0, 1}; Point(170) = {0.6003900170326233, 0.04475900158286095, 0, 1}; Point(171) = {0.6159300208091736, 0.04344699904322624, 0, 1}; Point(172) = {0.6315400004386902, 0.0420910008251667, 0, 1}; Point(173) = {0.6472100019454956, 0.04069200158119202, 0, 1}; Point(174) = {0.6629499793052673, 0.0392489992082119, 0, 1}; Point(175) = {0.6787599921226501, 0.03776200115680695, 0, 1}; Point(176) = {0.6946499943733215, 0.03623199835419655, 0, 1}; Point(177) = {0.7106199860572815, 0.0346589982509613, 0, 1}; Point(178) = {0.7266700267791748, 0.03304199874401093, 0, 1}; Point(179) = {0.7428100109100342, 0.03138099983334541, 0, 1}; Point(180) = {0.7590299844741821, 0.02967499941587448, 0, 1}; Point(181) = {0.7753499746322632, 0.02792399935424328, 0, 1}; Point(182) = {0.7917699813842773, 0.02612599916756153, 0, 1}; Point(183) = {0.8082900047302246, 0.02428100071847439, 0, 1}; Point(184) = {0.8249099850654602, 0.02238800004124641, 0, 1}; Point(185) = {0.8416299819946289, 0.02044299989938736, 0, 1}; Point(186) = {0.858460009098053, 0.0184480007737875, 0, 1}; Point(187) = {0.8745399713516235, 0.01650499925017357, 0, 1}; Point(188) = {0.8890900015830994, 0.01471399981528521, 0, 1}; Point(189) = {0.9022700190544128, 0.01306699961423874, 0, 1}; Point(190) = {0.9142000079154968, 0.0115520004183054, 0, 1}; Point(191) = {0.925000011920929, 0.01016299985349178, 0, 1}; Point(192) = {0.9347800016403198, 0.008889400400221348, 0, 1}; Point(193) = {0.9436399936676025, 0.007723500020802021, 0, 1}; Point(194) = {0.9516599774360657, 0.006657199934124947, 0, 1}; Point(195) = {0.9589200019836426, 0.005682699847966433, 0, 1}; Point(196) = {0.9654899835586548, 0.004792999941855669, 0, 1}; Point(197) = {0.9714400172233582, 0.003981099929660559, 0, 1}; Point(198) = {0.976830005645752, 0.003240799997001886, 0, 1}; Point(199) = {0.9817100167274475, 0.002566199982538819, 0, 1}; Point(200) = {0.9861299991607666, 0.001951699960045516, 0, 1}; Point(201) = {0.9901300072669983, 0.001392400008626282, 0, 1}; Point(202) = {0.9937499761581421, 0.0008835400221869349, 0, 1}; Point(203) = {0.9970300197601318, 0.0004207300080452114, 0, 1}; Point(204) = {-2, 0, 0, 1}; Point(205) = {2, 0, 0, 1}; Point(206) = {-25, 0, 0, 1}; Point(207) = {25, 0, 0, 1}; Line(1) = {1, 2}; Transfinite Line {1} = 55Using Progression 1; Line(2) = {4, 5}; Transfinite Line {2} = 55Using Progression 1; Line(5) = {12, 13, 14, 15, 16, 17, 18, 19 , 20, 21, 22, 23, 24, 25, 26, 27 , 28, 29, 30, 31, 32, 33, 34, 35 , 36, 37, 38, 39, 40, 41, 42, 43 , 44}; Transfinite Line {5} = 37Using Progression 1; Line(6) = {11, 109, 110, 111, 112, 113, 114, 115 , 116, 117, 118, 119, 120, 121, 122, 123 , 124, 125, 126, 127, 128, 129, 130, 131 , 132, 133, 134, 135, 136, 137, 138, 139 , 140}; Transfinite Line {6} = 37Using Progression 1; Circle(7) = {204, 11, 9}; Transfinite Line {7} = 37Using Progression 1; Circle(8) = {9, 11, 10}; Transfinite Line {8} = 55Using Progression 1; Circle(9) = {10, 11, 205}; Transfinite Line {9} = 37Using Progression 1; Circle(10) = {205, 11, 8}; Transfinite Line {10} = 37Using Progression 1; Circle(11) = {8, 11, 7}; Transfinite Line {11} = 55Using Progression 1; Circle(12) = {7, 11, 204}; Transfinite Line {12} = 37Using Progression 1; Line(13) = {204, 11}; Transfinite Line {13} = 30Using Progression 0.75; Line(14) = {205, 12}; Transfinite Line {14} = 30Using Progression 0.75; Line(15) = {9, 140}; Transfinite Line {15} = 30Using Progression 0.75; Line(16) = {10, 172}; Transfinite Line {16} = 30Using Progression 0.75; Line(17) = {7, 76}; Transfinite Line {17} = 30Using Progression 0.75; Line(18) = {8, 44}; Transfinite Line {18} = 30Using Progression 0.75; Line(19) = {44, 45, 46, 47, 48, 49, 50, 51 , 52, 53, 54, 55, 56, 57, 58, 59 , 60, 61, 62, 63, 64, 65, 66, 67 , 68, 69, 70, 71, 72, 73, 74, 75 , 76}; Transfinite Line {19} = 55Using Progression 1; Line(20) = {76, 77, 78, 79, 80, 81, 82, 83 , 84, 85, 86, 87, 88, 89, 90, 91 , 92, 93, 94, 95, 96, 97, 98, 99 , 100, 101, 102, 103, 104, 105, 106, 107 , 11}; Transfinite Line {20} = 37Using Progression 1; Line(21) = {140, 141, 142, 143, 144, 145, 146, 147 , 148, 149, 150, 151, 152, 153, 154, 155 , 156, 157, 158, 159, 160, 161, 162, 163 , 164, 165, 166, 167, 168, 169, 170, 171 , 172}; Transfinite Line {21} = 55Using Progression 1; Line(22) = {172, 173, 174, 175, 176, 177, 178, 179 , 180, 181, 182, 183, 184, 185, 186, 187 , 188, 189, 190, 191, 192, 193, 194, 195 , 196, 197, 198, 199, 200, 201, 202, 203 , 12}; Transfinite Line {22} = 37Using Progression 1; Line(35) = {4, 9}; Transfinite Line {35} = 40Using Progression 1; Line(36) = {5, 10}; Transfinite Line {36} = 40Using Progression 1; Line(37) = {2, 8}; Transfinite Line {37} = 40Using Progression 1; Line(38) = {1, 7}; Transfinite Line {38} = 40Using Progression 1; Line(39) = {4, 206}; Transfinite Line {39} = 37Using Progression 1; Line(40) = {206, 1}; Transfinite Line {40} = 37Using Progression 1; Line(41) = {5, 207}; Transfinite Line {41} = 37Using Progression 1; Line(42) = {207, 2}; Transfinite Line {42} = 37Using Progression 1; Line(43) = {207, 205}; Transfinite Line {43} = 40Using Progression 1; Line(44) = {206, 204}; Transfinite Line {44} = 40Using Progression 1; Line Loop(24) = {8, 16, -21, -15}; Plane Surface(24) = {24}; Transfinite Surface {24}; Recombine Surface {24}; Line Loop(26) = {9, 14, -22, -16}; Plane Surface(26) = {26}; Transfinite Surface {26}; Recombine Surface {26}; Line Loop(28) = {10, 18, -5, -14}; Plane Surface(28) = {28}; Transfinite Surface {28}; Recombine Surface {28}; Line Loop(30) = {11, 17, -19, -18}; Plane Surface(30) = {30}; Transfinite Surface {30}; Recombine Surface {30}; Line Loop(32) = {12, 13, -20, -17}; Plane Surface(32) = {32}; Transfinite Surface {32}; Recombine Surface {32}; Line Loop(34) = {7, 15, -6, -13}; Plane Surface(34) = {34}; Transfinite Surface {34}; Recombine Surface {34}; Line Loop(46) = {39, 44, 7, -35}; Plane Surface(46) = {46}; Transfinite Surface {46}; Recombine Surface {46}; Line Loop(48) = {2, 36, -8, -35}; Plane Surface(48) = {48}; Transfinite Surface {48}; Recombine Surface {48}; Line Loop(50) = {41, 43, -9, -36}; Plane Surface(50) = {50}; Transfinite Surface {50}; Recombine Surface {50}; Line Loop(52) = {42, 37, -10, -43}; Plane Surface(52) = {52}; Transfinite Surface {52}; Recombine Surface {52}; Line Loop(54) = {1, 37, 11, -38}; Plane Surface(54) = {54}; Transfinite Surface {54}; Recombine Surface {54}; Line Loop(56) = {40, 38, 12, -44}; Plane Surface(56) = {56}; Transfinite Surface {56}; Recombine Surface {56}; Physical Line(57) = {1, 2, 39, 40, 41, 42}; Physical Line(58) = {5, 6, 19, 20, 21, 22}; Physical Surface(59) = {24, 26, 28, 30, 32, 34, 46, 48, 50, 52, 54, 56};