<div dir="ltr"><div class="gmail_extra">Thank you Paul.</div><div class="gmail_extra"><br></div><div class="gmail_extra">The routine should work for non-uniform cartesian mesh also right, if the dx2 is calculated. This is done in y_average function but commented out for dy2 ???</div>
<div class="gmail_extra"><br></div><div class="gmail_extra">Regards</div><div class="gmail_extra">praveen</div><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Nov 13, 2013 at 5:10 PM, <span dir="ltr"><<a href="mailto:nek5000-users@lists.mcs.anl.gov" target="_blank">nek5000-users@lists.mcs.anl.gov</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div id=":t2" style="overflow:hidden">Hi Praveen,<br>
<br>
Yes, you are correct in assuming that y_average computes<br>
<br>
ua(x) = 1/L int_0^L u(x,y) dy<br>
<br>
under the assumptions of: 2D, uniform element length in y,<br>
and tensor-product array of elements (e.g., as generated<br>
by genbox).<br>
<br>
I wrote an x_average() routine a few weeks back and have<br>
tested it. I've just now added this to navier5.f --- hopefully it<br>
will work for you.<br>
<br>
Be certain you set lelx, lely, and lelz in SIZE, and likewise<br>
nelx,nely,nelz in (say) usrdat(), where you must also add:<br>
<br>
include 'ZPER'<br>
<br>
Of course, nelz=lelz=1 in your case.<br>
<br>
I<br>
<br>
Paul</div></blockquote></div><br><br></div></div>