<div dir="ltr">The developers can correct me if I'm wrong here, but nek doesn't actually use over-integration, although it does something similar (dealiasing). If we are computing, for example, u * u (u is vx in nek), the steps are :<div>
<br></div><div style>1) Interpolate u to the higher space (given by lxd, lyd, lzd) (Nek has arrays for this already...for velocity, they are vxd, vyd, vzd)</div><div style>2) Compute the product ud*ud on the higher order grid</div>
<div style>3) Interpolate the solution back to the original space (lx1,ly1,lz1)</div><div style><br></div><div style>I'm not aware of a mass matrix on the "dealiasing" mesh.</div><div style><br></div><div style>
Josh</div></div><div class="gmail_extra"><br><br><div class="gmail_quote">On Thu, Jan 24, 2013 at 3:13 AM, <span dir="ltr"><<a href="mailto:nek5000-users@lists.mcs.anl.gov" target="_blank">nek5000-users@lists.mcs.anl.gov</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hello<div>nek5000 can use over-integration for the quadratic nonlinear terms by setting lxd, lyd, lzd. Is it possible to use this for integration to approximate some integral like applying Biot-Savart law ? I have seen the use of the mass matrices bm1 and bm2 on the velocity and pressure meshes. Is there a mass matrix on the mesh (lxd,lyd,lzd) also which can be used for integration ?</div>
<div><br><div>I have read about the use of over-integration as a stabilization method. Can you suggest some papers/books which discuss the theory behind this ?</div></div><div><br></div><div>Thanks</div><div>praveen</div>
</div>
<br>_______________________________________________<br>
Nek5000-users mailing list<br>
<a href="mailto:Nek5000-users@lists.mcs.anl.gov">Nek5000-users@lists.mcs.anl.gov</a><br>
<a href="https://lists.mcs.anl.gov/mailman/listinfo/nek5000-users" target="_blank">https://lists.mcs.anl.gov/mailman/listinfo/nek5000-users</a><br>
<br></blockquote></div><br><br clear="all"><div><br></div>-- <br>Josh Camp<br><br>"All that is necessary for the triumph of evil is that good men do nothing" -- Edmund Burke
</div>