
Explanations for Xen-aware yielding patch

1 Preliminary

The patch is used to improve communication performance in VCPU overcom-
mitted system with Xen. This document is used to explain the reasons behind
the performance penalty on such systems, as well as how it improve mpich2-1.2.1
running on top of Xen.

Note: The patch applies only for the PV guests of Xen with overcommitted
configuration, i.e., the total number of VCPUs is greater than the number of
PCPUs (or cores) of the system.

2 Test-bed

A COTS PC server is used as the testbed. It has an Intel Core 2 Duo E6550 pro-
cessor, which has two processing cores, running at 2.33GHz with 128KBytes L1
cache, and 4MBytes shared L2 cache. Moreover, it is configured with 2GBytes
DDR2 memory, and 160GB SATA hard disk drive. For virtualization, we use
Xen with version number 3.4.2. The guest domains (including dom0 and do-
mUs) are installed Redhat Enterprise Linux x86 64 Operating System with ver-
sion number 5.1. The Xen-Linux with kernel version 2.6.18.8 is used to boot
the all the guest systems including dom0. The dom0 is the only privileged do-
main, which contains all drivers of the physical devices, and is configured with
512 MBytes memory. The domUs used in the experiments are Para-virtualized
(i.e., PV for short) guests. Each of the domUs is configured with 256 MBytes
memory, 4 GBytes virtual hard disk drive, and a virtual network interface card
to communicate with world outside (via the bridge network installed in dom0).
The number of VCPUs of the domUs can be easily varied by revising the con-
figuration file.

3 Before patching

3.1 Communication Performance

The benchmark used to collect MPI communication performance data is b eff
(URL: https://fs.hlrs.de/projects/par/mpi//b eff/).

We boot the testbed with a 2.6.28-rc2 Linux kernel that does not have SMP
support to form a uni-processor (UP for short) environment, and obtain the MPI
communication performance (we name it as native up) between two bench-
mark processes. Since the UP environment is comparable with the scenario

1

that overcommits multiple VCPUs to one physical processor, we use native up
performance as a reference in all following performance evaluations.

By using MPI primitives, the processes running inside a VM may commu-
nicate via two possible channels: the loopback network of dom0 and shared
memory. We measure the communication performance in both cases (i.e., inter-
vm for the former and intra-vm for the latter).

There are two schedulers available in Xen hypervisor: Credit and SEDF. For
all following experiments in this paper, we use the default scheduling parameters
of both schedulers, i.e., for Credit scheduler, all domains has the same weight
number of 256, and cap value 0, while for SEDF scheduler, the scheduling
parameter of dom0 is (15ms, 20ms, 1) and that of domUs is (0ms, 100ms, 1).
When testing the communication performance of overcommitted VCPUs, we
consider the following four configurations:

• inter vm credit pin The virtualized system uses Credit scheduler and is
booted with two processing cores. Two domUs are created, each of which
has only one VCPU, and all of their VCPUs are pinned to the physical
core one. The MPI communication performance between these two domUs
is measured.

• inter vm sedf pin The same as inter vm credit pin, except that Xen
hypervisor uses SEDF scheduler.

• intra vm credit pin The virtualized system uses Credit scheduler and is
booted with two processing cores. One domU is created with two VCPUs,
and all of its VCPUs are pinned to the physical core one. The MPI
communication performance inside the domU is measured.

• intra vm sedf pin The same as intra vm credit pin, except that Xen
hypervisor uses SEDF scheduler.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 10 100 1000 10000

B
an

dw
id

th
(M

B
/s

)

Logscaled Message Size(Bytes)

Send/Recieve Performance

native_up
inter_vm_sedf_pin
intra_vm_sedf_pin

inter_vm_credit_pin
intra_vm_credit_pin

Figure 1: MPI communication performance in overcommitted VCPUs

From above figure, it can be observed that compared with the native up
case, the MPI communication performance of the overcommitted VCPUs drops

2

dramatically. For all four overcommitted cases, the performance on SEDF sched-
uler is always (in both inter-vm and intra-vm cases) better than that obtained
on Credit scheduler. This is because the SEDF scheduler defines smaller time
slices than Credit scheduler, and the frequent scheduling helps reducing the
performance lose resulted by busy-polling mechanism, employed by MPI com-
munication library.

3.2 Execution Time of NPB Programs

To further address the performance problem in overcommitted VCPUs, three
benchmark programs are employed, i.e., is.A.2 (integer sorting, which relies on
all-to-all communication to exchange intermediate results) lu.A.2 (solving five
coupled parabolic/elliptic partial differential equations, which needs to com-
municate to exchange data during computation) and ep.A.2 (random-number
generator, which is “embarrassingly” parallel in that no communication is re-
quired for the generation of the random numbers itself), from NPB 3.3.

 1

 10

 100

 1000

 10000

is.A.2 lu.A.2 ep.A.2

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

native_up
inter_vm_credit_pin
inter_vm_sedf_pin
intra_vm_credit_pin
intra_vm_sedf_pin

Figure 2: Impacts on applications of VCPU overcommitting

A close look on the source code of mpich2-1.2.1 reveals the fact that the
performance penalty is resulted by the busy-polling mechanism employed by
MPI library. Since the yielding (e.g, sched yield in guest OS) after polling for
regulated times (i.e., 1000 times defined by the library) simply does not work to
yield the VCPU hosting the application to be re-scheduled at hypervisor layer.

3.3 Why need a patch?

There are two main reasons to improve MPI communication performance in the
overcommitted VCPUs:

1. With current Xen architecture, the scheduling decisions are made locally.
Each PCPU of a multi-processor system maintains its VCPU run-queue
and schedules them to run without coordinations with other PCPUs of the
system. Therefore, in overcommitted systems (i.e., the number of VCPUs
is greater than the number of PCPUs), it is very possible that two VCPUs

3

that hosts processes communicating with each other via MPI primitives
are not scheduled simultaneously. And this result in the same scenario
as that discussed in the preceding experiments, although the VCPUs may
reside in the run-queues of different PCPUs.

2. With the load-balancing strategy of Credit scheduler, which is the current
default scheduler for Xen, PCPUs will “steals” VCPU from the run-queue
of its neighboring PCPUs to execute when it found an empty local run-
queue. And this scheme may make the VCPUs communicating with each
other to run on the same PCPU concurrently, which forms the same sce-
nario as that discussed in preceding experiments.

Therefore, improving the MPI communication performance in overcommitted
VCPUs will help improving the overall performance of overcommitted systems
with HPC workloads.

4 After patching

4.1 Communication Performance

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 10 100 1000 10000

B
an

dw
id

th
(M

B
/s

)

Logscaled Message Size(Bytes)

(a) with Credit scheduler

native_up
inter_vm_credit_pin
intra_vm_credit_pin

rev_inter_vm_credit_pin
rev_intra_vm_credit_pin

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 10 100 1000 10000

B
an

dw
id

th
(M

B
/s

)

Logscaled Message Size(Bytes)

(b) with SEDF scheduler

native_up
inter_vm_sedf_pin
intra_vm_sedf_pin

rev_inter_vm_sedf_pin
rev_intra_vm_sedf_pin

Figure 3: MPI communication performance in overcommitted VCPUs after im-
provement

Within above figure, the performance data marked with “rev ” prefix means
that of b eff linked with mpich2-1.2.1 that is revised by employing the patch.
The communication performance is improved greatly: For Credit scheduler,
about 300 times higher communication performance is achieved in inter-vm
case, and 700 times higher for intra-vm case, while for SEDF scheduler, about
3 times higher for inter-vm case and about 4 times higher for intra-vm case.

Moreover, for intra-vm cases, the communication performance with revised
MPI library becomes rather close to that of native UP case. This is because for
intra-vm cases, most of the communications are conducted via shared memory,
which is rather similar as the inter-process communication in native case. The
difference is that the context switch happens between VCPUs is more expen-
sive than the processes. For inter-vm cases, the communication data exchanged
between domUs needs to be relayed by the loopback network of dom0, and
this results worse performance than the intra-vm cases although it is still much
higher than that of original MPI library implementation. Moreover, with the

4

load-balancing mechanism of Credit scheduler, the VCPUs of dom0 will auto-
matically migrates to the “spared” core, and thus have enough processing re-
sources to relay the messages, which results better communication performance
than SEDF scheduler in inter-vm cases.

4.2 Execution Time of NPB Programs

4.2.1 On Defined Overcommitted Scenarios

 0

 50

 100

 150

 200

 250

 300

is.A.2 lu.A.2 ep.A.2

E
xe

cu
tio

n
T

im
e(

Se
co

nd
s)

native_up
rev_inter_vm_credit_pin
rev_inter_vm_sedf_pin
rev_intra_vm_credit_pin
rev_intra_vm_sedf_pin

Figure 4: Performance of NPB programs after improvement

From above figure, it can be observed that after patching, the execution
time of is.A.2 and lu.A.2 is rather close to that of running inside native UP
environment.

4.2.2 On Overcommitted Systems

We use the domUs with two VCPUs to construct the overcommitted systems.
By increasing the number of the domUs from one to four, we gradually increase
the overcommitting pressure on the testbed. In each case, identical benchmark
programs, i.e., is.A.2 or lu.A.2 from NPB, are invoked simultaneously to run in
these domUs, and their execution time is recorded. Table 1 demonstrates the
average (each average number is computed by three samples) execution time of
these benchmark programs on Credit scheduler, and Table 2 demonstrates that
on SEDF scheduler.

From Table1, it can be observed that when the overcommitting pressure is
low (i.e., for the 1 domU and 2 domUs cases), the execution time of benchmark
programs with revised MPI library is rather close to that with original MPI
library. The performance of is.A.2 is even a little worse than the original one.
This is because giving small number of VCPUs, the possibility that the VCPUs
of the same domUs are not scheduled to run simultaneously is low, and this
results in less wasting of CPU cycles as that in the intra vm credit pin config-
uration. Moreover, more frequent VCPU context switches will resulted by our
proposal, since there are VCPUs from dom0 even when there is only one domU

5

Table 1: Average execution time of is.A.2 and lu.A.2 with different overcom-
mitting pressure on Credit scheduler

is.A.2 lu.A.2
original revised original revised

(seconds) (seconds) (seconds) (seconds)
1 domU 1.841 1.852 105.047 104.658
2 domUs 4.711 5.220 265.270 248.948
3 domUs 9.555 5.986 389.371 344.684
4 domUs 13.980 7.906 522.217 448.37

hosting is.A.2 running on the testbed, which results in a little worse performance
than that of is.A.2 with original version MPI library.

However, when the overcommitting pressure turns higher (i.e., for the 3 do-
mUs and 4 domUs cases), the average execution time of the benchmark programs
with revised MPI libraries are significantly shorter than that with the original
MPI libraries. This is because with the more VCPUs running, the possibility
of VCPUs of the same VM being not scheduled simultaneously is significantly
higher than that with less VCPUs. And this inevitably results in the same kind
of performance losing experienced in the intra vm credit pin configuration for
the programs employing original MPI library.

Table 2: Average execution time of is.A.2 and lu.A.2 with different overcom-
mitting pressure on SEDF scheduler

is.A.2 lu.A.2
original revised original revised

(seconds) (seconds) (seconds) (seconds)
1 domU 1.843 1.825 103.943 103.096
2 domUs 3.571 3.470 236.318 235.046
3 domUs 5.252 5.147 354.547 355.677
4 domUs 7.206 6.739 481.759 474.352

From Table 2, it can be observed that on SEDF scheduler, the performance
improvements that can be achieved by replacing the MPI library is smaller
than that on Credit scheduler. This is because SEDF schedules the VCPUs
with smaller time slices than the Credit scheduler, which naturally results in
less performance losing due to the busy-polling mechanism employed by MPI
library. Moreover, the SEDF scheduler does not supports load-balancing by
automatically migrating the VCPUs to idle PCPUs, which results less perfor-
mance losing experienced in intra vm sedf pin configuration. Compared the
data in Table 2 and Table 1, it can be observed that the average execution
time of lu.A.2 is substantially increased on SEDF. This is also because the load-
balancing mechanism employed by Credit scheduler improved the throughput
of the system.

Lastly, we employ a domU that is configured with one VCPU and hosting
a dead-loop program as the noise workload to simulates the case that VMs
hosting HPC workload compete resources with other VMs. The noise VM does
nothing except honestly burning out each 30ms time slice that is allocated by

6

the Credit scheduler. In Table 3, we demonstrate the average execution time
of is.A.2 running inside different number of domUs that run along with the
noise VM on Credit scheduler. The table also records the averaged standard
deviation of execution time that is obtained from the execution time of is.A.2
running inside the co-existing domUs in each case with different overcommitting
pressure.

Table 3: Average execution time and standard deviation of is.A.2 with different
overcommitting pressure and noise on Credit scheduler

original revised
Avg. Exec. Time Avg. Std. Avg. Exec. Time Avg. Std.

(seconds) Deviation (seconds) Deviation
1 domU 16.997 - 4.888 -
2 domUs 11.948 4.228 6.721 0.443
3 domUs 17.739 2.546 8.227 0.290
4 domUs 20.496 4.665 10.288 0.415

From Table 3, it can be observed that compared with the data from Table
1, after the introduction of noise workload, the execution time of is.A.2 with
the original version of MPI library increased greatly, whereas that with the re-
vised MPI library experienced a reasonable increasing. This is because if one
of the VCPUs of a VM hosting is.A.2 linked with the original MPI library is
scheduled simultaneously with the VCPU of the noise VM on the testbed, the
busy-polling mechanism will force the VCPU to run 30ms, which results wast-
ing of processing resources and the prolonged execution time as well. Moreover,
this also results the confusion in statistically fair-share mechanism employed by
Credit scheduler, which thus results the high standard deviation on execution
time of the benchmark programs running simultaneously in the co-existing do-
mUs. In this case, the revised MPI library by our proposal can greatly decrease
the execution time as well as the standard deviation.

4.3 Problems remained

The patch assume the user application start MPI invocations with MPI Init
and stop that with MPI Finalize, therefore, it does not deal with the threaded
invocation of MPI routines.

7

