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Abstract. The MPI-IO interface is a critical component in I/O software
stacks for high-performance computing, and many successful optimiza-
tions have been incorporated into implementations to help provide high
performance I/O for a variety of access patterns. However, in spite of
these optimizations, there is still a large performance gap between ”easy”
access patterns and more difficult ones, particularly when applications
are unable to describe I/O using collective calls.
In this paper we present LogFS, a component that implements log-based
storage for applications using the MPI-IO interface. We first discuss how
this approach allows us to exploit the temporal freedom present in the
MPI-IO consistency semantics, allowing optimization of a variety of ac-
cess patterns that are not well-served by existing approaches. We then
describe how this component is integrated into the ROMIO MPI-IO im-
plementation as a stackable layer, allowing LogFS to be used on any
file system supported by ROMIO. Finally we show performance results
comparing the LogFS approach to current practice using a variety of
benchmarks.

1 Introduction

Dealing with complex I/O patterns remains a challenging task. Despite all op-
timizations, there is still a huge difference in I/O performance between simple
(contiguous) and complex (non-contiguous) access patterns [2] This difference
can be attributed to physical factors (non-contiguous patterns typically cause
read-modify-write sequences and require time-consuming seek operations) and to
software issues (complex patterns require more memory and processing). Recent
papers concentrated on reducing the software overhead associated with process-
ing complex I/O patterns [4–6].

In computational science defensive I/O is common: applications write check-
points in order to provide a way to rollback in the event that a system failure



terminates the application prematurely. In the event that an application suc-
cessfully executes for an extended period, these checkpoints may never actually
be read. So while the application might exhibit complex access patterns dur-
ing checkpoint write, if we can defer the processing of the complex pattern,
we might attain much higher throughputs than otherwise possible. Of course,
some mechanism must be available for post-processing the complex pattern in
the event that the data is read, ideally with little or no additional overhead. If
this post-processing mechanism is fast enough, this approach could be used as a
general-purpose solution as well.

The MPI-IO interface [9] is becoming the standard mechanism for computa-
tional science applications to interact with storage, either directly or indirectly
via high-level libraries such as HDF5 [10] and Parallel netCDF [11]. This makes
the MPI-IO implementation an ideal place to put I/O optimizations. The MPI-
IO default consistency semantics are more relaxed than the traditional POSIX
semantics [12] that most file systems strive to implement. In particular, the MPI-
IO default semantics specify that only local changes are visible to an application
process until an explicit file synchronization call is made. This aspect of the
standard will enable us to further optimize our implementation.

In this paper we present LogFS, an extension to the ROMIO MPI-IO im-
plementation [1] designed to provide log-based storage of file data in parallel
applications. The functionality is provided transparently to the user, it follows
the MPI-IO consistency semantics, and a mechanism is provided for reconsti-
tuting the canonical file so that UNIX application can subsequently access the
file. In Section 2 we describe the LogFS approach. In Section 3 we show how
this approach has significant performance benefits in write-heavy workloads. In
Section 4 we conclude and discuss future directions for this work.

1.1 Related work

Two groups are actively pursuing research in MPI-IO optimizations that are rel-
evant to this work. The group at Northwestern University has been investigating
mechanisms for incorporating cooperative caching into MPI-IO implementations
to provide what is effectively a large, shared cache. They explore using this cache
for both write-behind, to help aggregate operations, and to increase hits in read-
heavy workloads [15, 16]. Our work is distinct in that we allow our “cache” to
spill into explicit log files, and we perform this caching in terms of whole accesses
rather than individual pages or blocks. Their implementations to date have also
relied on the availability of threads, MPI-2 active-target one-sided communica-
tion, or the Portals interface, limiting applicability until active-target operations
become more prevalent on large systems. Our work does not have these require-
ments.

Yu et. al. have been investigating mechanisms for improving parallel I/O
performance with the Lustre file system. Lustre includes a feature for joining
previously created files together into a new file. They leverage these features
to create files with more efficient striping patterns, leading to improved per-
formance [14]. Their observations on ideal stripe widths could be used to tune



stripe widths for our log files or to improve the ration of creation of the final
canonical file on systems using Lustre.

2 LogFS

The LogFS extension to ROMIO provides independent, per-process write logging
for applications accessing files via MPI-IO. On each process, logging is separated
into a log file containing the data to be written, called the datalog and a log file
holding metadata about these writes such as location and epoch, called the
metalog. A global logfs file is stored while the file is in log format and maintains
a list of the datalogs and metalogs. Together these files maintain sufficient data
that the correct contents of the file can be generated at any synchronization
point.

The logfs file is initially created using MPI MODE EXCL and MPI MODE CREATE.
Note that in a production implementation we would need to manage access to
this file so that the file was open by only one MPI application if logging was in
progress. This could be managed using an additional global lockfile.

The datalog and metalog files are opened independently with MPI COMM SELF
and are written sequentially in contiguous blocks, regardless of the application’s
write pattern, hiding any complexity in the write pattern and deferring the
transformation of the data into the canonical file organization (i.e. the traditional
POSIX file organization) until a later time.

The data logfile contains everything written to the file by the corresponding
process. Data is written in large contiguous blocks corresponding to one or more
MPI-IO write operations. This lends itself to high performance on most parallel
file systems, because there is no potential for write lock contention.

The metadata logfile records, for every write operation by the process, the file
offset (both in the real file and in the datalog) and the transfer size. In addition to
write operations, the metadata log also tracks MPI File sync, MPI File set size
and MPI File set view. However, this is done in a lazy fashion: only changes
actually needed to accurately replay the changes are stored. Calling sequences
without effect to the final file, such as repeatedly changing the file view without
actually writing to the file, are not recorded in the metalog. Of these operations,
all have a fixed overhead, except for MPI File set view. Currently, datatypes
are stored as lists of 〈offset, size〉 pairs.

It was observed in early parallel I/O studies that parallel applications often
perform many, small, independent I/O operations [13]. This type of behavior con-
tinues today, and in some cases high-level I/O libraries can contribute through
metadata updates performed during I/O. Keeping this in mind, LogFS can ad-
ditionally use a portion of local memory for aggregation of log entries. This
aggregation allows LogFS to more efficiently manage logging of I/O operations
and convert many small I/O operations into a fewer number of larger contiguous
ones, again sequential in file.



2.1 Creating the Canonical File for Reading

By default, LogFS tries to postpone updating the canonical file for as long as
possible. In some situations, such as files opened in write-only mode, even closing
the file will not necessarily force a replay. This allows for extremely efficient
checkpointing.

When a LogFS file is opened in MPI MODE RDONLY, the canonical file is au-
tomatically generated if logs are still present. The canonical file is generated
through a collective “replay” of the logs. In our implementation we assume that
the number of replay processes is the same as the original number of writer
processes, but replay processes could manage more than one log at once.

Replay occurs in epochs corresponding to writes that occur between synchro-
nization points. By committing all writes from one epoch before beginning the
next, we are able to correctly maintain MPI-IO consistency semantics without
tracking the timing of individual writes. Each process creates an in memory
rtree[8], a spatial data structure allowing efficient range queries. Replayers move
through the metalog, updating their rtree with the location of the written data
in the datalog. When the replayer hits the end of an epoch or the processed data
reaches a certain configurable size, the replayer commits these changes to the
canonical file. To accomplish a commit, the replayer process reads the data from
the datalog into a local buffer, calls MPI File set view to define the region(s)
in the canonical file to modify, then calls MPI File write all to modify the
region(s). Processes use MPI Allreduce between commits to allow all processes
to complete one epoch before beginning the next. This approach to replay al-
ways results in large, collective I/O operations, allowing any underlying MPI-IO
optimizations to be used to best effect [7].

This also enables the user to only replay those files that are actually needed.
With this system, LogFS is transparent to all applications using MPI-IO; re-
play will happen automatically when needed. However, it is often the case that
post-processing tools are not written using MPI-IO. In the climate community,
for example, Parallel netCDF is often used to write datasets in parallel using
MPI-IO, but many post-processing tools use the serial netCDF library, which is
written to use POSIX I/O calls. For those situations, a small stand-alone utility
is provided that can force the replay of a LogFS file.

An additional MPI-IO hint, replay-mode is understood by the LogFS-enabled
ROMIO. When this is set to “replay-on-close”, replay is automatically performed
when a LogFS file is closed after writing. The stand-alone tool simply opens the
LogFS file for writing with this hint set, then closes the file. Note that with this
approach as many processes as originally wrote the LogFS file may be used to
replay in parallel.

2.2 Mixed Read and Write Access

The LogFS system is obviously designed for situations where writes and reads
are not mixed. However, for generality we have implemented two mechanisms
for supporting mixed read and write workloads under LogFS.



When MPI MODE RDRW is selected for a file, MPI consistency semantics require
that a process is always able to read back the data it wrote; Unless atomic mode
is also enabled, data written by other processes only has to become visible after
MPI File sync is called (or after closing and re-opening the file, which performs
an implicit sync). If a user chooses both atomic mode and MPI MODE RDRW, LogFS
optimizations are not appropriate, and we will ignore that case in the remainder
of this work.

In order to guarantee that data from other processes is visible at read time,
we replay local logs on each process at synchronization points. Replay consists
of local independent reads of logs followed by collective writes of this data in
large blocks. This has the side-effect of converting all types of application access
(independent or collective, contiguous or noncontiguous) into collective accesses,
increasing performance accordingly [7].

We have two options for guaranteeing that data written locally is returned
on read operations prior to synchronization. A simple option is for processes to
ensure that the canonical file is up-to-date on read; this may be accomplished
by performing a local replay in the event of a read operation. In this case,
only the first read operation will be slow, all subsequent reads will continue at
native speeds. However, this method performs badly with strongly mixed I/O
sequences; Frequent reads force frequent log replays, and the efficiency of write
aggregation diminishes with increased replay frequencies.

Another option is for each process to track regions written locally since the
last sync operation. If those regions overlap with parts of a read request, data
needs to be read from the datalog. Accesses to unchanged regions may be serviced
using data from canonical file. If a very large number of writes occur, and the
memory cost of tracking each individual region becomes too high, we have the
option of falling back to our first option and completely replaying the local log,
removing the need to track past regions.

To efficiently track write regions during MPI MODE RDRW mode, every process
maintains an in-memory rtree at run-time. For every written region, the rtree
records the location of that data in the datalog of the process, and on every
write operation this rtree is updated, in a manner similar to the approach used
in replay.

The rtree then provides us with an efficient mechanism for determining if local
changes have been made since the last synchronization, and if so, where that data
is located in the datalog. With this scheme a read request gets transformed by
LogFS into at most two read operations; one to read data from the datalog, and
one to read any remaining data from the canonical file.

Unfortunately, tracking all affected regions in long-living files with lots of
fragmented write accesses can lead to large rtree descriptions. In these cases we
are forced to either update the canonical file with local changes, to shrink the
rtree, or stop tracking writes all together and fall back to our original option.



2.3 Implementing in ROMIO

LogFS is implemented as a component integrated into ROMIO[1]. ROMIO in-
corporates an interface for supporting multiple underlying file systems called
ADIO. We prototyped two approaches for implementing LogFS.

LogFS ADIO Implementation The first approach was to implement LogFS
as a new ADIO component. In this approach LogFS appears as a new file sys-
tem type, but internally it makes use of some other ADIO implementation for
performing file I/O. For example, a user opening a new file on a PVFS file sys-
tem using the “logfs:” prefix on their file name would create a new LogFS-style
file with logs and canonical file stored on the PVFS file system. A consequence
of this approach is that LogFS can be enabled on any filesystem supported by
ROMIO, and the file may be written in the usual “normal” data representation.

Under a strict interpretation of the MPI-IO standard, changes to a file
in the “normal” (or “external32”) data representation must be made visible
to other applications at synchronization points, unless the file is opened with
MPI MODE UNIQUE OPEN. To meet this strict interpretation of the standard, LogFS
must perform a full replay at synchronization points if unique open is not spec-
ified, even when in write-only mode. This approach is only most effective when
applications use the unique open mode.

LogFS as a Data Representation Our second approach was to implement
LogFS as ROMIO’s “internal” data representation, a somewhat creative inter-
pretation of the internal data representation specification. To function as a data
representation, LogFS must intercept all file access operations. For this pur-
pose, a layering technique for ADIO components was developed which allowed
transparent interception of all ADIO methods.

When the user changes to our internal data representation (using MPI File set view,
the LogFS ADIO is layered on top of the active ADIO driver for the file. One
difference between this approach and the ADIO approach is that the data rep-
resentation may be changed through MPI File set view at any time, so if the
view is later restored to its original setting, the logfiles are immediately replayed
and the canonical file created.

According to the standard, the format of a file stored in the internal data
representation is not known. This means that we can force applications to open
the file and change the data representation back to “native” prior to access by
application not using MPI-IO. This hook allows us to avoid the need to replay
logs at synchronization points in the general case.

3 Performance Results

In this section we show results of experiments comparing the LogFS approach
to a stock ROMIO implementation (included in mpich 1.0.5p4). As the base
filesystem, PVFS[17] version 2.6.3 was used. The filesystem was configured to



use TCP (over gigabit ethernet) as network protocol, with 4 I/O servers and 1
metadataserver. For testing the filesystem, 16 additional nodes were used.

Before we present our results we will first quantitatively describe the overhead
incurred by our logging process.

3.1 Overhead

There is a certain amount of overhead introduced by first recording I/O oper-
ations in the logfiles. During the write-phase, overhead consists of meta data
(describing the I/O operation) and actual data (the data to be written), both
stored in the logfiles. Likewise, during replay, everything read from the logfiles
can be considered overhead. Table 1 indicates per-operation overhead based on
the storage format described in 2.

Operation Log File Overhead
Metalog Datalog

MPI File write datalog offset, write offset (2x MPI OFFSET) datatype size × count

MPI File set view displacement(MPI OFFSET) + 0
etype(flatlist) + filetype(flatlist)

MPI File sync epoch number(MPI INT) 0

MPI File set size filesize(MPI OFFSET) 0

Table 1. LogFS logfile overhead.

Many scientific applications perform regular checkpointing. Typically, only
the latest or a small number of checkpoints are kept; In this case, most of the data
written to the checkpoint file will never survive; it will be over-written during
run-time or deleted shortly after the the application terminates. Although all
data will be forced out to the datalog, in the event that data is over-written it
will never be read again because a replay of the metalog will only keep track of
the most recent data.

In the worst case when data is not overwritten, all data will be read again
during replay. However, since data in the metalog is accessed sequentially and
in large blocks, these transfers typically reach almost full filesystem bandwidth.

3.2 Results

For testing, we choose the well known “noncontig” benchmark. Noncontig par-
titions the test file in vectors of a fixed size, allocating them in a round-robin
fashion to every CPU. This generates a non-contiguous regular strided access
pattern. Figure 1 shows how the LogFS write bandwidth compares to that of a
stock ROMIO implementation.

The results clearly show how LogFS is capable of transforming extremely
inefficient access patterns (such as the independent non-contiguous pattern in
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Fig. 1. noncontig benchmark (vector count = 8388608)

the left figure) into faster ones. Using LogFS, a peak write bandwidth of approx.
300 MB/s is reached. Without LogFS, peak bandwidth is only approx. 20 MB/s
for collective access, and only around 2 MB/s for independent access.

To see how closely LogFS gets to the maximum write bandwidth possible, a
small test program (“contwrite”) was created that directly writes large blocks –
the same size of the write-combining buffers used in two-phase and LogFS – to
the filesystem. The results can be seen in Figure 1.

(Additional results detailing replay performance will be added in a later
version of this paper)

4 Conclusions and Future Work

LogFS is capable of enhancing write performance of programs using complex file
access patterns. Its layered design and modest file system requirements allow
the approach to be employed on a wide variety of underlying file systems. For
application checkpoints that might never be read again, performance can be
improved by at least a factor of 10.

LogFS is primarily targeted at write-only (or write-heavy) I/O workloads.
However, much of the infrastructure implemented for LogFS may be reused to
implement independent per-process caching in MPI-IO. We are actively pursuing
this development. This approach provides write aggregation benefits, can trans-
form a larger fraction of I/O operations into collective ones, and has benefits
for read-only and read-write workloads. Similar to LogFS, per-process caching
doesn’t require MPI threads or active-target one-sided MPI operations, meaning
that it can be implemented on systems such as the IBM Blue Gene/L [3] and
Cray XT3 that lack these features.

Currently, LogFS creates one logfile for every process opening the file. When
running on large numbers of processes, this leads to a huge amount of logfiles. To
avoid this, we are considering sharing logfiles between multiple processes. This
approach is complicated by the need for processes opening files in read/write
mode to “see” local changes between synchronization points, because this means
that multiple processes might need to read the same log files at runtime.



Currently, datatypes are stored as lists of 〈offset, size〉. By using the MPI Type get envelope
function, a more compact description using type constructors could be used in-
stead. This would further reduce the amount of meta-data that needs to be
logged.
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